
E0 232: PROBABILITY AND STATISTICS

PROBLEM SHEET 5
TUTORIAL ON 3RD NOV AND 5TH NOV, 2014 (5.30 PM ONWARDS)

VENUE: CSA-252

(1) [Rohatgi 6.2.6, Hajek 2.16] Let θ > 0 be a constant. Let X1, X2, . . . be
iid random variables uniformly distributed on the interval [0, θ]. Let Yn =
max{X1, . . . , Xn}.
(a) Show that Yn

P→ θ. (This means that Yn converges in probability to a
degenerate random variable at θ)

(b) Does Yn
a.s.→ θ?

(c) Does Yn
L2

→ θ?

(2) [Hajek 2.8] Let Θ be uniformly distributed on the interval [0, 2π]. In which of
the three senses (a.s., L2, P ), do each of the following two sequences converge?
Identify the limiting random variables, if they exist, and justify your answers.
(a) {Xn}n≥1 defined by Xn = cos(nΘ).
(b) {Yn}n≥1 defined by Yn =

∣∣1− Θ
π

∣∣n.

(3) [Rohatgi 6.2.8] Let {Xn} be a sequence of RVs such that P{|Xn| < k} = 1

for all n and some constant k > 0. Suppose that Xn
P→ X. Show that Xn

Lr→ X
for any r > 0.

(4) [Rohatgi 6.2.20b] Let {Xn} be a sequence of RVs such that P (Xn = en) =
1/n2, P (Xn = 0) = 1 − 1/n2, and zero otherwise. Does Xn converge in
probability? Does Xn converge in rth mean?

(5) [Rohatgi 6.3.1] Let X1, X2, . . . be a sequence of iid RVs with common uni-

form distribution on [0, 1]. Also, let Zn = (
∏n

k=1 Xk)
1/n

be the geometric

mean of X1, X2, . . . , Xn. Show that Zn
P→ c, where c is a constant. Find c.

These problems have been taken from:

• Chapter 6 of An Introduction to Probability and Statistics by Rohatgi and Saleh, second
edition.

• Chapter 2 of An Exploration of Random Processes for Engineers by Bruce Hajek, 2014.

Some of the problems have been modified slightly. The problems given here are not straightforward,
and hence, solving other problems from suggested textbooks before trying these may be useful.
Solutions of these problems will be discussed during the tutorial session.
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(6) [Rohatgi 6.3.4,6.3.6] Let X1, X2, . . . be a sequence of RVs. Prove the law
of large numbers when:

(a) V ar(Xk) <∞ for all k and 1
n2

n∑
k=1

V ar(Xk)→ 0 as n→∞.

(b) V ar(Xk) ≤ C for all k and Cov(Xi, Xj)→ 0 as |i− j| → ∞.

(7) A random quantity is measured multiple times. Let En be the error in mea-
surement at the nth trial. It is given that for n > N

P (En > ε) ≤ n1−α for some α > 0.

(a) For what values of α can we say that with probability 1, the error is at
most ε infinitely often?

(b) Can we say, under some conditions, that with probability 1, the error is
at least ε infinitely often?

(8) [Hajek 2.30] Suppose that you are given one unit of money (for example, a
million dollars). Each day you bet a fraction α of it on a coin toss (assume
coin is unbiased). If you win, you get double your money back, whereas if
you lose, you get half of your money back. Let Wn denote the wealth you
have accumulated (or have left) after n days. Identify in what sense(s), Wn

converges, and when it does, identify the limiting random variable
(a) for α = 0 (pure banking),
(b) for α = 1 (pure betting),
(c) for general α.
(d) What value of α maximizes the expected wealth E[Wn]? Would you

recommend using that value of α?
(e) What value of α maximizes the long term growth rate of Wn?

(Hint: Consider logWn and apply the LLN.)
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Possible Solutions

NOTE: These are possible solutions for the above problems. They may not be
correct, and even if they are correct, they may not be the best way to solve the
problems.

(1) Done in class
(2) Part (a)

Suppose there is a rv X such that cosnΘ
L2

→ X. Then E[(cosnΘ−X)2]→ 0.
Thus, for m, n large enough, we can write

E[(cosmΘ− cosnΘ)2] = E[{(cosmΘ−X) + (X − cosnΘ)}2]

= E[(cosmΘ−X)2] + E[(X − cosnΘ)2] + 2E[(cosmΘ−X)(X − cosnΘ)]

The first two terms go to zero for large m, n and we can bound third term by
Cauchy-Scwarz inequality to show

E[(cosmΘ−X)(X − cosnΘ)] ≤ E[|(cosmΘ−X)(X − cosnΘ)|]

≤
√
E[(cosmΘ−X)2]E[(X − cosnΘ)2]

which also goes to zero. Thus if cosnΘ
L2

→ X, then E[(cosmΘ−cosnΘ)2]→ 0
as m,n→∞. On the other hand, we can compute

E[(cosmΘ− cosnΘ)2] =
1

2π

∫ 2π

0

(cos2mθ + cos2 nθ − 2 cosmθ cosnθ)dθ{
0 if m = n
1/2 if m 6= n

Thus, E[(cosmΘ− cosnΘ)2] does not always go to zero for large m,n. This
leads to a contradiction. Hence, cosnΘ does not converge in L2.

Observe that P (| cosnΘ| ≤ 1) = 1. If cosnΘ
P→ X, then we can use

Problem (3) to claim cosnΘ
L2

→ X. Since, the latter is not true, hence cosnΘ
does not converge in probability.

Similarly, if cosnΘ
a.s.→ X, we can say cosnΘ

P→ X. Since, the latter is not
true, cosnΘ does not converge in almost sure sense.

Part (b)
Note for any θ ∈ (0, 2π), |1− θ

2π
| < 1. Hence,

Yn(ω) = |1− θ

2π
|n → 0

Thus,

P ({ω : Yn(ω)→ 0}) = P (0, 2π) = 1.
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Hence, Yn
a.s.→ 0, which also implies Yn

P→ 0. Similarly, one can compute

E[|Yn − 0|2] =
2

2n+ 1
→ 0 as n→∞.

Hence, Yn
L2

→ 0.
(3) Since P (|Xn| < k) = 1 and P (|Xn −X| > ε)→ 0 for all ε > 0,

P (|X| > k + ε) = P (|Xn +X −Xn| > k + ε)

≤ P (|Xn|+ |Xn −X| > k + ε)

≤ P (|Xn| > k) + P (|Xn −X| > ε)→ 0.

So P (|X| ≤ k + ε) = 1 for all ε > 0, and hence, P (|X| ≤ k) = 1. Thus, for
any n,

P (|X −Xn| > 2k) ≤ P (|Xn|+ |X| > 2k)

≤ P (|Xn| > k) + P (|X| > k) = 0.

So P (|X −Xn| ≤ 2k) = 1.
We now use the following fact from [Rohatgi, page 75]: If Z is a non-negative

rv, then EZ =
∞∫
0

(1− FZ(z)dz.

Now define Zn = |Xn−X|r. Then Zn is non-negative random variable with
P (Zn ≤ (2k)r) = 1, and P (Zn > ε)→ 0 for any ε > 0. So∫ ∞

0

(1− FZn(z)dz =

∫ (2k)r

0

P (Zn > z)dz

=

∫ ε

0

P (Zn > z)dz +

∫ (2k)r

ε

P (Zn > z)dz

≤
∫ ε

0

dz +

∫ (2k)r

ε

P (Zn > ε)dz

= ε+ P (Zn > ε)((2k)r − ε)
→ ε as P (Zn > ε)→ 0.

So, limn→∞E[|Xn −X|r] ≤ ε for all ε > 0. So limn→∞E[|Xn −X|r] = 0.
(4) For any ε > 0,

P (|Xn − 0| > ε) ≤ P (Xn 6= 0) =
1

n2
→ 0.

Hence, Xn
P→ 0.
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Recall if Xn
L2

→ X for some r.v. X, then Xn
P→ X. Since, we already know

that Xn
P→ 0, it suffices to check whether Xn

L2

→ 0 or not. Observe that

E[|Xn − 0|r] =
ern

n2
→∞ as n→∞.

Hence, Xn does not converge in Lr.
(5) We know if Xn is uniform on [0, 1], then − logXn has exponential distribution

with λ = 1. Hence, E[− logXn] = 1 and V ar(− logXn) = 1 < ∞ for all n.
Now, check that

− logZn = − log

(
n∏
k=1

Xk

)1/n

=
1

n

n∑
k=1

(− logXk).

Hence, by law of large numbers, (− logZn)
P→ 1. So, for any δ > 0, we have

P (| − logZn − 1| ≥ δ)→ 0, or we can write

P ({eZn ≤ e−δ} ∪ {eZn ≤ eδ})
= P ({log(eZn) ≤ −δ} ∪ {log(eZn) ≤ δ})
= P (| log(eZn)| ≥ δ) = P (| logZn + 1| ≥ δ)→ 0.

Thus, for any ε > 0,

P (|Zn − e−1| ≥ ε) = P (|eZn − 1| ≥ ε)

= P ({eZn ≤ 1− eε} ∪ {eZn ≥ 1 + eε})
≤ P ({eZn ≤ (1 + eε)−1} ∪ {eZn ≥ 1 + eε})

Since, (1 + a)−1 > (1 − a) for any a > 0. Putting δ = log(1 + eε) above and

combining with previous convergence, we get Zn
P→ e−1.

(6) Part (a)

It is given that
1

n2

n∑
k=1

V ar(Xk)→ 0 as n→∞.

E

[(
Sn
n
− µ

)2
]

=
1

n2
V ar(Sn) =

1

n2

n∑
k=1

V ar(Xk)→ 0.

So, Sn
n

L2

→ µ, and hence, Sn
n

P→ µ, which proves LLN.
Part (b)
It is given Cov(Xi, Xj) → 0 as |i − j| → ∞. This means given any ε > 0,

there exists an integer iε such that for all i > iε, Cov(Xk, Xk+i) < ε. We
also know that V ar(Xk) ≤ C for all k, and by Cauchy-Schwarz inequality
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Cov(Xk, Xl) ≤
√
V ar(Xk)V ar(Xl) ≤ C for all k, l. Now,

E

[(
Sn
n
− µ

)2
]

=
1

n2
E

( n∑
k=1

Xk − µ

)2


=
1

n2

n∑
k=1

V ar(Xk) +
2

n2

n∑
k=1

n∑
l=k+1

Cov(Xk, Xl)

=
1

n2

n∑
k=1

V ar(Xk) +
2

n2

n−1∑
i=1

n−i∑
k=1

Cov(Xk, Xk+i)

=
1

n2

n∑
k=1

V ar(Xk) +
2

n2

iε∑
i=1

n−i∑
k=1

Cov(Xk, Xk+i) +
2

n2

n∑
i=iε+1

n−i∑
k=1

Cov(Xk, Xk+i)

<
1

n2

n∑
k=1

C +
2

n2

iε∑
i=1

n−i∑
k=1

C +
2

n2

n∑
i=iε+1

n−i∑
k=1

ε

≤ nC

n2
+

2iεnC

n2
+

2n2ε

n2
.

So, for any ε > 0,

lim
n→∞

E

[(
Sn
n
− µ

)2
]
< 2ε,

which means the limit is 0. So, Sn
n

L2

→ µ, and hence, Sn
n

P→ µ, which proves
LLN.

(7) Fact:
∑

n
1
np
<∞ for any p > 1, and

∑
n

1
np

=∞ for any p ≤ 1. At least, you

should remember
∑

n
1
n2 <∞ and

∑
n

1
n

=∞.

Using above fact, if α > 2, then
∑

n
1

nα−1 <∞. So,

∞∑
n=1

P (En > ε) =
N∑
n=1

P (En > ε) +
∞∑

n=N+1

P (En > ε)

≤ N +
∞∑

n=N+1

1

nα−1
<∞.
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Hence, by first part of Borel-Cantelli lemma, P

(⋂
n

⋃
k≥n
{En > ε}

)
= 0. So,

for α > 2,

P ({En ≤ ε} i.o.) = P

(⋂
n

⋃
k≥n

{En ≤ ε}

)

≥ P

(⋃
n

⋂
k≥n

{En ≤ ε}

)

= 1− P

({⋃
n

⋂
k≥n

{En ≤ ε}

}c)

= 1− P

(⋂
n

⋃
k≥n

{En > ε}

)
= 1.

To show P ({En ≥ ε} i.o.) = P

(⋂
n

⋃
k≥n
{En ≥ ε}

)
= 1, we can apply second

part of Borel-Cantelli lemma, if En are independent random variables and∑
n P (En > ε) = ∞. To comment whether we obtain an infinite sum, we

need a lower bound on P (En > ε) whose sum over all n is infinite.
(8) Try it yourself.
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