Introduction	Model	Conclusion	References	References

ELMO

Deep contextualized word representations

A R Shaarad, Prateek Sachan

Indian Institute of Science

April 26, 2019

Introduction	Model	Conclusion	References	References
Contents				

1 Introduction

2 Model

3 Evaluation

4 Conclusion

5 References

Introduction	Model	Conclusion	References	References

Introduction

Introduction	Model	Conclusion	References	References
Embedding				

- Computers understand only numbers.
- Need a way to represent every word.

Introduction	Model	Evaluation	Conclusion	References	References
Embedding	1				

- Computers understand only numbers.
- Need a way to represent every word.
- Method 1:
 - Assign ID to each word in vocabulary
 - No relatedness between words

Introduction	Model	Evaluation	Conclusion	References	References
Embedding	r				

- Computers understand only numbers.
- Need a way to represent every word.
- Method 1:
 - Assign ID to each word in vocabulary
 - No relatedness between words
- Method 2:
 - Sparse vector representation for every word
 - Word-context: count of words appearing in context window
 - Word-doc: count of words appearing in the document
 - Long, typically 20-50K for every word

Introduction	Model	Evaluation	Conclusion	References	References
Embedding]				

- Computers understand only numbers.
- Need a way to represent every word.
- Method 1:
 - Assign ID to each word in vocabulary
 - No relatedness between words
- Method 2:
 - Sparse vector representation for every word
 - Word-context: count of words appearing in context window
 - Word-doc: count of words appearing in the document
 - Long, typically 20-50K for every word
- Method 3:
 - Dense vector representation for every word
 - SVD based methods, Word2Vec, Glove
 - Short, typically 100-1000 for every word

Introduction	Model		Conclusion	References	References
Pre-traine	ed Embeddir	าต			

- Goal is to model
 - complex characteristics of word use (e.g., syntax and semantics)
 - how these uses vary across linguistic contexts

Introduction	Model		Conclusion	References	References
Pre-traine	ed Embeddir	าต			

Goal is to model

- complex characteristics of word use (e.g., syntax and semantics)
- how these uses vary across linguistic contexts

Word2Vec representation [Mik+13]

- Unsupervised method
- Increasing the similarity between words that appear in similar contexts
- Performs well in semantic analogy tasks like synonyms, company-product relations, zip codes and cities, etc.
- Use context only at time of training
- Used as look-up tables at inference time, no context utilization.

Introduction	Model	Conclusion	References	References
Due tue la ed	l ⊏usele e el ellu			

Pre-trained Embedding

Goal is to model

- complex characteristics of word use (e.g., syntax and semantics)
- how these uses vary across linguistic contexts
- Word2Vec representation [Mik+13]
 - Unsupervised method
 - Increasing the similarity between words that appear in similar contexts
 - Performs well in semantic analogy tasks like synonyms, company-product relations, zip codes and cities, etc.
 - Use context only at time of training
 - Used as look-up tables at inference time, no context utilization.
- Deep contextualized word representations
 - ELMo uses bi-Language model [Pet+18]
 - BERT uses bi-Transformer network [Dev+18]

Introduction	Model	Conclusion	References	References
Language	model			

- Probability distribution over a sequence of words
- Given a sequence of words w_1, \ldots, w_m , the probability can be modelled as

$$P(w_1,\ldots,w_m)=\prod_{i=1}^m P(w_i|w_1,\ldots,w_{i-1}).$$

Introduction	Model	Conclusion	References	References
Language	model			

- Probability distribution over a sequence of words
- Given a sequence of words w_1, \ldots, w_m , the probability can be modelled as

$$P(w_1,\ldots,w_m)=\prod_{i=1}^m P(w_i|w_1,\ldots,w_{i-1}).$$

Traditional methods

- Count based
- Estimate n-gram probabilities via counting and smoothing
- Fail to estimate rare word probabilities
- Finite history

Introduction	Model	Conclusion	References	References
Language	model			

- Probability distribution over a sequence of words
- Given a sequence of words w_1, \ldots, w_m , the probability can be modelled as

$$P(w_1,\ldots,w_m)=\prod_{i=1}^m P(w_i|w_1,\ldots,w_{i-1}).$$

Traditional methods

- Count based
- Estimate n-gram probabilities via counting and smoothing
- Fail to estimate rare word probabilities
- Finite history
- Neural language models
 - Use recurrent neural networks
 - Infinite history
 - Can handle rare words: Relatedness of embeddings

Introduction	Model	Evaluation	Conclusion	References	References

Model

Introduction	Model	Conclusion	References	References

Character Level CNN

Figure: Char CNN [Kim+16]

Introduction	Model	Conclusion	References	References
Character	· Level CNN			

- Character embedding dimension: 15
- Number of characters in a word: 32
- Filter size: 5
- Number of filters: 1000
- Pooling: Max pooling
- Nonlinearity: Tanh

Introduction	Model	Conclusion	References	References
Highway I	Network			

- Outputs a combination of the input y and a transformed output
- The combination is itself determined by an affine transformation on the input

$$\blacksquare z = t \odot g(W_H y + b_H) + (1 - t) \odot y$$

- $t = \sigma(W_T y + b_T)$: Transform gate
- (1 t): Carry gate

Introduction	Model	Evaluation	Conclusion	References	References
ISTM					

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs

Introduction	Model	Conclusion	References	References
Bi Langua	ge model			

Predict next token given history

$$P(w_1,\ldots,w_m)=\prod_{i=1}^m P(w_i|w_1,\ldots,w_{i-1}).$$

Predict previous token given future context

$$P(w_1,\ldots,w_m)=\prod_{i=1}^m P(w_i|w_{i+1},\ldots,w_N).$$

Introduction	Model	Conclusion	References	References
Bi Language	model			

Predict next token given history

$$P(w_1,\ldots,w_m)=\prod_{i=1}^m P(w_i|w_1,\ldots,w_{i-1}).$$

Predict previous token given future context

$$P(w_1,\ldots,w_m)=\prod_{i=1}^m P(w_i|w_{i+1},\ldots,w_N).$$

- In each LSTM layer, run two LSTMs, one in forward direction and one in backward direction
- To predict word w_k
 - Concatenate second layer forward LSTM output from word *w*_{*k*-1} and backward LSTM output of word *w*_{*k*+1}
 - Pass it through a dense layer
 - Apply softmax function to obtain probability distribution over words

Introduction	Model	Conclusion	References	References
Training				

- Penn Treebank dataset
- $\blacksquare \sim$ 10000 unique words
- ~ 1 million tokens
- 12 epochs
- Validation perplexity \sim 89
- Batch size: 20
- Learning rate: 1

Introduction	Model	Evaluation	Conclusion	References	References

Source: https://people.cs.umass.edu/ miyyer/cs585/lectures/06-neural-lms.pdf

Introduction	Model	Evaluation	Conclusion	References	References

Evaluation

Introduction	Model	Evaluation	Conclusion	References	References
Downstre	am task				

- Sentiment analysis
- IMDB dataset
 - Classify movie reviews as positive or negative
- Model
 - Convolution layer with various filter sizes and max pooling
 - Fully connected layer
 - Regularization: Dropout
 - Loss function: Binary cross entropy
 - Adam Optimizer

Introduction	Model	Evaluation	Conclusion	References	References
Results					

- Using ELMo Embedding
 - 79.31% accuracy
- Trained word2vec model using same Penn Treebank dataset
- Using word2vec Embedding
 - 83.44% accuracy

Introduction	Model	Evaluation	Conclusion	References	References

Conclusion

Introduction	Model	Conclusion	References	References
Conclusion				

- Training a biLM to generate the word embedding requires large amount of data.
- This may be due to the fact that LM needs to see a large number of different sequences to generalize well.
- ELMo is a deep model and thus has a lot more parameters to train compared to word2vec model and thus require more data
- Smaller dataset is not sufficient to learn good language model for word embedding.

Introduction	Model	Conclusion	References	References

References

Introduction	Model	Evaluation	Conclusion	References	References
References I					

Tomas Mikolov et al. "Distributed Representations of Words and Phrases and Their Compositionality". In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS'13. Lake Tahoe, Nevada: Curran Associates Inc., 2013, pp. 3111– 3119. URL: http://dl.acm.org/citation.cfm?id=2999792. 2999959.

Rafal Jozefowicz et al. Exploring the limits of language modeling. 2016. URL: https://arxiv.org/pdf/1602.02410.pdf.

Jacob Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: arXiv preprint arXiv:1810.04805 (2018).

