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Embedding

m Computers understand only numbers.
= Need a way to represent every word.

A R Shaarad, Prateek Sachan ML Project presentati April 26, 2019



Introduction

Embedding

m Computers understand only numbers.

= Need a way to represent every word.
m Method 1:

m Assign ID to each word in vocabulary
m No relatedness between words

A R Shaarad, Prateek Sachan ML Project presentati April 26, 2019



Introduction

Embedding
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= Need a way to represent every word.
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m Assign ID to each word in vocabulary

m No relatedness between words
= Method 2:

B Sparse vector representation for every word
Word-context: count of words appearing in context window
Word-doc: count of words appearing in the document
Long, typically 20-50K for every word
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Introduction

Embedding

Computers understand only numbers.

Need a way to represent every word.
Method 1:

m Assign ID to each word in vocabulary
m No relatedness between words

Method 2:
B Sparse vector representation for every word
m Word-context: count of words appearing in context window
m Word-doc: count of words appearing in the document
m Long, typically 20-50K for every word
= Method 3:
m Dense vector representation for every word

® SVD based methods, Word2Vec, Glove
m Short, typically 100-1000 for every word
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Pre-trained Embedding

= Goal is to model

m complex characteristics of word use (e.g., syntax and semantics)
m how these uses vary across linguistic contexts

A R Shaarad, Prateek Sacl ML Project presentation April 26, 2019



Introduction

Pre-trained Embedding

= Goal is to model

m complex characteristics of word use (e.g., syntax and semantics)
m how these uses vary across linguistic contexts

m Word2Vec representation [Mik+13]

m Unsupervised method

m Increasing the similarity between words that appear in similar contexts

m Performs well in semantic analogy tasks like synonyms, company-product relations, zip
codes and cities, etc.

Use context only at time of training

Used as look-up tables at inference time, no context utilization.
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Introduction

Pre-trained Embedding

= Goal is to model

m complex characteristics of word use (e.g., syntax and semantics)
m how these uses vary across linguistic contexts
m Word2Vec representation [Mik+13]
m Unsupervised method
m Increasing the similarity between words that appear in similar contexts
m Performs well in semantic analogy tasks like synonyms, company-product relations, zip
codes and cities, etc.
m Use context only at time of training
m Used as look-up tables at inference time, no context utilization.

m Deep contextualized word representations

m ELMo uses bi-Language model [Pet+18]
m BERT uses bi-Transformer network [Dev+18]
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Introduction

Language model

m Probability distribution over a sequence of words
m Given a sequence of words wy, . . . wp, the probability can be modelled as

m
P(wy,...Wn) = HP(W,’|W1,..‘W,'_1).

i=1
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Introduction

Language model

m Probability distribution over a sequence of words
m Given a sequence of words wy, . . . wp, the probability can be modelled as

m
P(wy,...Wn) = HP(W,’|W1,..‘W,'_1).

i=1

m Traditional methods
m Count based
m Estimate n-gram probabilities via counting and smoothing
m Fail to estimate rare word probabilities
= Finite history

m Neural language models

m Use recurrent neural networks
m Infinite history
® Can handle rare words: Relatedness of embeddings
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Character Level CNN
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Figure: Char CNN [Kim+16]
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Character Level CNN

m Character embedding dimension: 15
= Number of characters in a word: 32
m Filter size: 5

= Number of filters: 1000

m Pooling: Max pooling

= Nonlinearity: Tanh
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Highway Network

= Outputs a combination of the input y and a transformed output

m The combination is itself determined by an affine transformation on the input
Bz=t0g(Why+by)+(1 -0y

m t = o(Wry + br): Transform gate

m (1 —1t): Carry gate
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Figure: LSTM cell

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs
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Bi Language model

= Predict next token given history

m
P(W1,... Wm) = HP(W,’|W1,...W,'_1).

i=1
m Predict previous token given future context

m
P(wy,...wm) = [ [ P(Wilwiys, .. wy).

i=1
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Bi Language model

= Predict next token given history

m
P(wy,...wn) = HP(W/|W1,...W/_1).

i=1
m Predict previous token given future context

m
P(wy,...wm) = [ [ P(Wilwiys, .. wy).

i=1

m In each LSTM layer, run two LSTMs, one in forward direction and one in backward
direction
m To predict word wy
m Concatenate second layer forward LSTM output from word wy_ 1 and backward LSTM
output of word w1

m Pass it through a dense layer
m Apply softmax function to obtain probability distribution over words
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Training

Penn Treebank dataset

~ 10000 unique words

~ 1 million tokens

12 epochs

Validation perplexity ~ 89
Batch size: 20

Learning rate: 1
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Embeddings
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Figure: ELMO
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Source: https://people.cs.umass.edu/ miyyer/cs585/lectures/06-neural-Ims.pdf
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Evaluation

Downstream task

= Sentiment analysis
= IMDB dataset
m Classify movie reviews as positive or negative
= Model
m Convolution layer with various filter sizes and max pooling
Fully connected layer
Regularization: Dropout
Loss function: Binary cross entropy
Adam Optimizer
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Evaluation

Results

m Using ELMo Embedding

m 79.31% accuracy
m Trained word2vec model using same Penn Treebank dataset
m Using word2vec Embedding

m 83.44% accuracy
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Conclusion

Conclusion

m Training a biLM to generate the word embedding requires large amount of data.

= This may be due to the fact that LM needs to see a large number of different
sequences to generalize well.

m ELMo is a deep model and thus has a lot more parameters to train compared to
word2vec model and thus require more data

m Smaller dataset is not sufficient to learn good language model for word
embedding.
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