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Embedding

Computers understand only numbers.

Need a way to represent every word.

Method 1:
Assign ID to each word in vocabulary
No relatedness between words

Method 2:
Sparse vector representation for every word
Word-context: count of words appearing in context window
Word-doc: count of words appearing in the document
Long, typically 20-50K for every word

Method 3:
Dense vector representation for every word
SVD based methods, Word2Vec, Glove
Short, typically 100-1000 for every word
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Pre-trained Embedding

Goal is to model
complex characteristics of word use (e.g., syntax and semantics)
how these uses vary across linguistic contexts

Word2Vec representation [Mik+13]
Unsupervised method
Increasing the similarity between words that appear in similar contexts
Performs well in semantic analogy tasks like synonyms, company-product relations, zip
codes and cities, etc.
Use context only at time of training
Used as look-up tables at inference time, no context utilization.

Deep contextualized word representations
ELMo uses bi-Language model [Pet+18]
BERT uses bi-Transformer network [Dev+18]
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Language model

Probability distribution over a sequence of words

Given a sequence of words w1, . . .wm, the probability can be modelled as

P(w1, . . .wm) =
m∏

i=1

P(wi |w1, . . .wi−1).

Traditional methods
Count based
Estimate n-gram probabilities via counting and smoothing
Fail to estimate rare word probabilities
Finite history

Neural language models
Use recurrent neural networks
Infinite history
Can handle rare words: Relatedness of embeddings
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Character Level CNN

Figure: Char CNN [Kim+16]
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Character Level CNN

Character embedding dimension: 15

Number of characters in a word: 32

Filter size: 5

Number of filters: 1000

Pooling: Max pooling

Nonlinearity: Tanh
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Highway Network

Outputs a combination of the input y and a transformed output

The combination is itself determined by an affine transformation on the input

z = t � g(WHy + bH) + (1− t)� y

t = σ(WT y + bT ): Transform gate

(1− t): Carry gate
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LSTM

Figure: LSTM cell

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs
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Bi Language model

Predict next token given history

P(w1, . . .wm) =
m∏

i=1

P(wi |w1, . . .wi−1).

Predict previous token given future context

P(w1, . . .wm) =
m∏

i=1

P(wi |wi+1, . . .wN).

In each LSTM layer, run two LSTMs, one in forward direction and one in backward
direction
To predict word wk

Concatenate second layer forward LSTM output from word wk−1 and backward LSTM
output of word wk+1
Pass it through a dense layer
Apply softmax function to obtain probability distribution over words
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Training

Penn Treebank dataset

∼ 10000 unique words

∼ 1 million tokens

12 epochs

Validation perplexity ∼ 89

Batch size: 20

Learning rate: 1
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Embeddings

Figure: ELMO

Source: https://people.cs.umass.edu/ miyyer/cs585/lectures/06-neural-lms.pdf
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Evaluation
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Downstream task

Sentiment analysis
IMDB dataset

Classify movie reviews as positive or negative

Model
Convolution layer with various filter sizes and max pooling
Fully connected layer
Regularization: Dropout
Loss function: Binary cross entropy
Adam Optimizer
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Results

Using ELMo Embedding
79.31% accuracy

Trained word2vec model using same Penn Treebank dataset
Using word2vec Embedding

83.44% accuracy
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Conclusion
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Conclusion

Training a biLM to generate the word embedding requires large amount of data.

This may be due to the fact that LM needs to see a large number of different
sequences to generalize well.

ELMo is a deep model and thus has a lot more parameters to train compared to
word2vec model and thus require more data

Smaller dataset is not sufficient to learn good language model for word
embedding.
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