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Introduction

Generative Adversarial Networks (GANs) have been used in the recent
past for image generation, training data augmentation and many
other applications.

Lot of variants like cGAN (Conditional GAN), DCGAN (Deep
Convolutional GAN), ACGAN (Auxiliary Classifier GAN) etc.

Adversarial training between two neural networks (Generator and
Discriminator) forms the basic underlying architecture)

Hardly converges during training in practice since there is no stable
equilibrium point but there is a saddle point as in a minimax game
between 2 players)
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Architecture with Objective function for unconditional

GAN
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Minimax objective function:
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Alternate between:
1. Gradient ascent on discriminator
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2. Instead: Gradient ascent on generator, different N =

objective "}}D‘Ezw(z) log(De, (Gog(Z))) —

Instead of minimizing likelihood of discriminator being correct, now

maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient y
MOr bad samples => works much better! Standard in practice. e Lyvgzden cignal

High gradient signal

Figure: Architecture of Basic GAN (No conditioning used)
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Architecture with Objective function for unconditional

GAN (contd.)
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Figure: Architecture of GAN used for training on MNIST Dataset (No
conditioning used)
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Experimental Observations on Synthetic Data

@ 10000 examples of Synthetic Data (x,y) where

X ~ N(0,1)

and
y =10+ x°.

@ The generator initially gave erroneous data while the discriminator
was at its very best generating a very low probability less than 0.1.

o After a few epochs, the generator was close to the actual data while
the discriminator was found to give probability as high as 0.9.

@ However, immediately after this epoch, the generator failed miserably
in generating real data. Also it started diverging from the real
distribution. The discriminator was also found to output low
probability under that situation as expected but it was not at its best
during the training since it was also found that discriminator was
giving probability as high as 0.7 under that undesirable situation.
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Experimental Results on MNIST Data using unconditional

GAN

MNIST data: 60000 training images, 10000 test images

Figure: Number of Epochs = 400
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Experimental Results on MNIST Data using unconditional
GAN (contd.)

Figure: Number of Epochs = 500
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Experimental Results on MNIST Data using unconditional
GAN (contd.)

Figure: Number of Epochs = 1000
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Architecture with Objective function for conditional GAN

@ Minimax Objective function? :

V(D,6)= E [logD(x|y)]+ E )[log(l—D(G(Z\y))]

X~ Pdata(X Z~pz\Z

o Aim :
min max V(D, G)
G D

@ Here G and D represent the parameters of the generator and the
discriminator networks respectively.

°[3]
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Architecture with Objective function for conditional GAN

(contd.)
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Figure: Architecture of GAN used for training on MNIST Dataset ( Conditioning

used)
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Experimental Results on MNIST Data using conditional

GAN
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Figure: Output obtained at 100" epoch using conditional GAN
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Architecture for Deep Convolutional GAN
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Figure: Architecture of conditional DCGAN used for training on MNIST Dataset
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Experimental Results on MNIST Data using Deep

Convolutional GAN
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Figure: Generated MNIST Data at 30" epoch with conditional DC-GAN
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Comparison between conditional GAN and Deep

Convolutional GAN
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Figure: cGAN vs DCGAN training history
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Application of CGAN in realistic face image synthesis

@ In the problem of face recognition with limited training data, CGAN
can be used to augment the existing training set3. The generated
faces of each identity should be composed of various combinations of
attribute vectors such as pose, facial expression, lighting condition,
etc.* to make the augmented training set diverse and balanced.

@ To keep identity constant and allow other attributes to vary, we can
provide attribute vector to both the Generator and Discriminator.

@ To train the Discriminator, we will use another dataset (CelebA was
used in the paper) which is already enriched with various combinations
of face attributes such as pose, expression, lighting, age, etc.

@ Although the identities present in the target face recognition dataset

may not be present in the dataset which is diverse and balanced and
will teach the discriminator about the various face attributes only.

°12]
*[1]
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Our Auxilliary GAN architecture to generate realistic face

images conditioned on various attributes
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Figure: Flow Diagram of training the Discriminator (with the aim to minimize the
difference between input score and output score; and minimize the cross entropy
between P;, and Pyy:)
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Our Auxiliary GAN architecture to generate realistic

images conditioned on various attributes
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Figure: Flow Diagram of training the Generator: Use the gradient of discriminator
loss to update its parameters with the aim of minimizing the D loss on the
generated fake data
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@ Although by varying the conditional information provided to this
extended GAN, the resulting generative model can generate faces with
specific attributes from random noise, it requires strong supervision of
the label information provided with the annotated training data.
Hence, to overcome this problem the IVI (Intra-class variation
isolation) GAN has recently been proposed by some researchers from
France which provides the ability to learn realistic models directly
from data in an unsupervised fashion . This formulation is able to
learn realistic models with continuous, semantically meaningful input
parameters and needs only the weak supervision of binary attribute
labels. We can implement the IVI-GAN in future.
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Conclusion

@ A Generative Adversarial Network (GAN) takes the idea of using a
generator model to generate fake examples and the discriminator
model tries to decide if the image it receives is a fake (i.e. from the
generator) or a real sample.

@ The conditional GAN which is an extension of generative adversarial
networks (GANs) to a conditional setting, attempts to guide the data
generation process in a better way by providing certain contextual
information about the data.
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Conclusion

@ Convolutional nets, in general, find areas of correlation within an
image, that is, they look for spatial correlations. This means a
DCGAN would likely be more fitting for image/video data, whereas
the general idea of a GAN can be applied to wider domains.

@ As discussed above, in the ordinary conditional gan (C-GAN) we feed
the network with one conditional information. to provide the network
with more side-information apart from the identity label such as age,
lighting condition, facial expression in order to generate more
photorealistic new face of the given identity with sufficient intra-class
variations an additional task-specific auxiliary classifier to the
discriminator is used to optimize the model on the original tasks as
well as the additional task
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