The Moon is made of green cheese!

Screening for fake news using Journalism ethics.

1

- There is a rise of false claims on the Web.
- These claims often have political, or financial agenda.
- What has been done so far to curb fake news?
 - 1. Manual verification
 - 2. Automated detection

Introduction

How to screen for fake news in the absence of evidence or counter-evidence?

Problem Statement

Paper	Fact Checking	Linguistics Features	Source Credibility
Singh et al. (2018)	Y	Y	Y
Popat et al. (2017)	Y	Y	Y
Rashkin et al. (2017)		Y	
Potthast et al. (2017)		Y	

Related work

- For a given news article, quantify how much it aligns with the principles of Ethical Journalism.
- Project-relevant principles of Journalism:
 - **1**. Presentation of multiple viewpoints.
 - 2. Independence from political, financial, or cultural affiliation.
 - **3.** Truth and accuracy.

Solution Approach

5

- These principles form the basis of features to be extracted from the news articles. (First stage). The features include the following:
 - **1**. Propaganda Score (violates principles 1 and 2).
 - 2. Click bait Score (violates principle 2).
 - **3.** Emotional language Score (violates principle 1).

Solution Approach

6

• The features extracted are the input into a binary classifier. (Second stage)

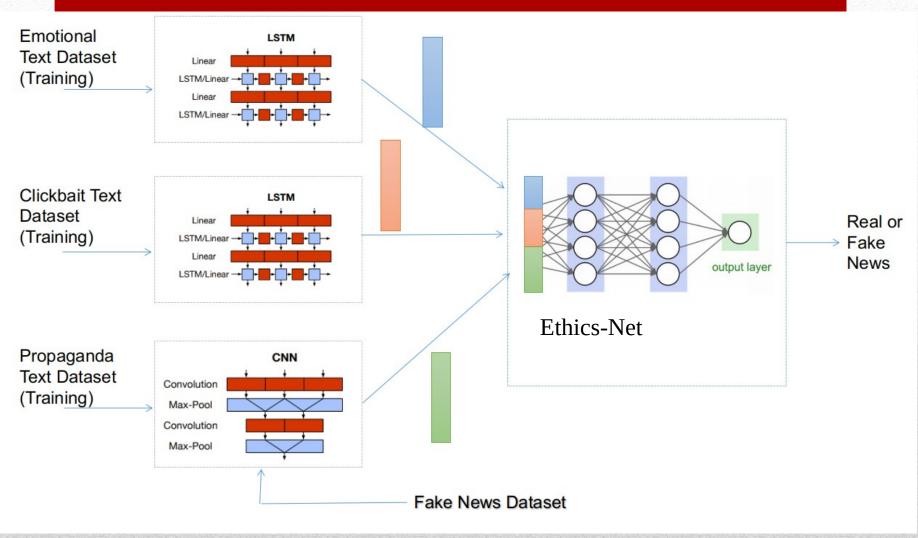
Solution Approach 7

Dataset	Number of articles
Clickbait Data	32,000
Propaganda Data	20,000
CrowdFlower Emotion in Text	40,000
Fake News Corpus	20,000

Datasets

Journalistic objectivity can help determine the veracity of news articles

Experiment Hypothesis



Solution Sketch

10

- Aim
 - Classification of a given piece of text to be **emotional** or **neutral**

• Architecture

- Bi-LSTM + Scaled dot product Attention

Data pre-processing

- Replaced urls with <URL> and user names with <USER> tokens
- Spacy for word tokenization
- Bucketing strategy

• Initial Attempts

Number of classes	Model	Accuracy
13	GRU	~21
8	Bi-LSTM + Glove	~33

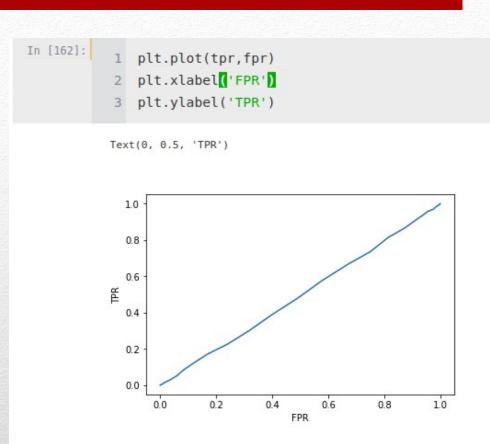
• Training

Architecture	Accuracy
Bi-LSTM + Glove	63.2
Bi-LSTM + Glove + Attention	77.6

• Metrics

Metric	Score	
Precision	0.78	
Recall	0.91	
F1-score	0.84	

Performance of the model on out-of-domain dataset.



Overview

- Analysed linguistic patterns across the news articles by characterizing the content using various lexical resources.
- Tokenize the text into a 3-D matrix whose rows are the sentences and columns, words.
- Each word is represented as a 71-D vector encoding membership in various lexicons.
- Model architecture is a Convolutional Neural Network to detect indicative n-grams.

Propaganda Detection

Lexicons used

- 1. Linguistic Inquiry and Word Count (LIWC), a lexicon widely used in social science studies.
- 2. Subjective words often used to dramatize or sensationalize a news story.
- **3**. Hedge words that indicate vague or obscuring language.
- 4. Intensifying lexicons used to enliven and attract readers.

Propaganda Detection

Model architecture and result

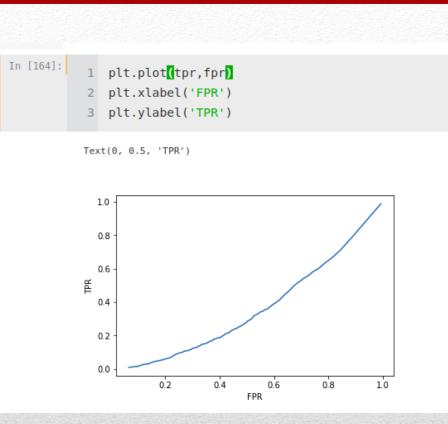
The hyperparameters of the best performing CNN model are:

- 16 kernels
- Kernel size of 1x3
- 3 convolution layers
- 1 max pool layer
- 1 dropout layer (rate of 0.5)

The model achieved an accuracy of **90%** in its in-domain test set.

Propaganda Detection

Performance of the model on out-of-domain dataset.



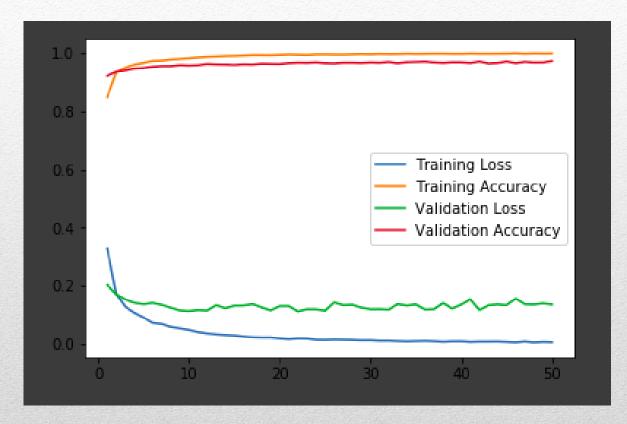
Propaganda Detection

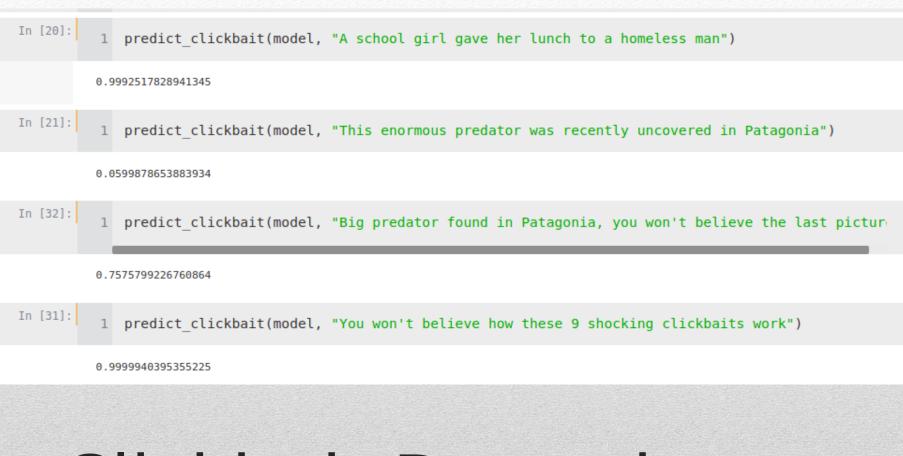
18

- Clickbait detection was done by using Recurrent NNs specifically Bi-LSMTs
- Data Pre-Processing
 - Word tokenization Spacy tokenizer
 - Unknown words <UNK> in the vocabulary
 - Bucketing strategy prepare batches with similar lengths so that minimal padding is added
- Training
 - Various methodologies with various hyperparameters were searched
 - Model with the best accuracy and F1-Score was chosen

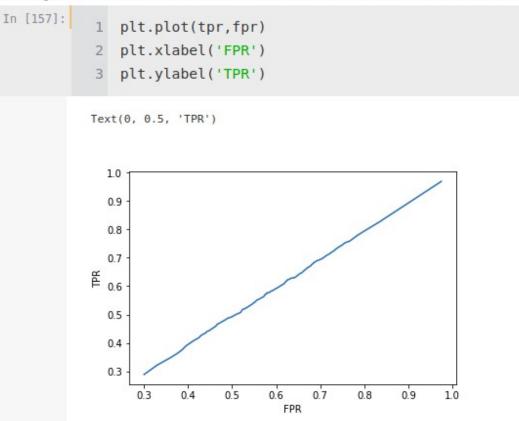
	Loss	Accuracy
RNN	19	93
LSTM	15.5	94
Bi-LSTM	15	94.5
LSTM + Glove	14	95
Bi-LSTM +Glove	11.0	96.84

Training and Validation Accuracy over the epochs To get better results, dropout is applied and number of LSTM layers =2





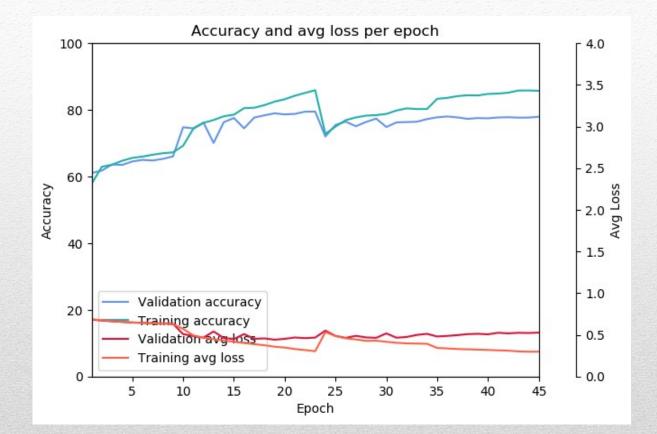
AUC-ROC Curve : Using clickbait probabilities to predict Fake News. Shows one feature not enough.



- After the individual models are trained, they are frozen
- A hybrid model is created that takes as inputs feature vectors from individual models
- This hybrid model is a neural network with two hidden layers and all layers are fully connected
- Output of the hybrid model is one value which says whether news is fake or not
- Based on the ground truth, weights of ONLY this model are trained to maintain interpretability

Combining them all 23

Accuracy / Loss of Ethics-Net over epochs



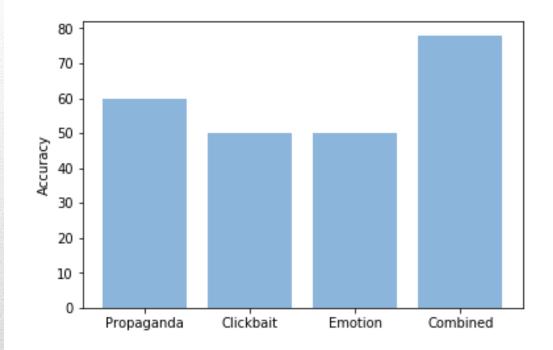
Evaluation Metrics 24

- Precision:80.722%
- Recall:76%
- F1-Score:78.2%
- Accuracy:78.9%
- Confusion Matrix

	Predicted Fake News	Predicted Real News
tual Fake ews	1520	480
tual Real ews	363	1637

Evaluation Metrics 25

- Below: Accuracy of each of the models+combined model for detecting Fake News
- Shows that combining features is better



Interpreting Results

- Feature detectors are trained over completely different dataset and tested on a different dataset with different objective
- Although Transfer Learning is difficult in textual domain, we acheived an accuracy of ~78%
- Thus we see combining journalistic feature detectors is a promising way of Fake News Detection

Conclusion