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Deep Learning algorithms directly work on the
data with only the features represented In
eucledian space, but there are lots of cases
where data is generated from non eucledian
space and they are represented as graphs with
relationships and interdependency between
objects(nodes). There are many algorithms
proposed for handling such data.




Algorithms Used

We have used following algorithms:

*DeepWalk

*Graph Convolutional Networks




Deepwalk

Here the model treats each node as a word, and
makes random walks in the graphs to make
sentences.

From the generated sentences the model then
applies word2vec algorithms to find the vector
representation of the nodes.
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(a) YouTube Social Graph (b) Wikipedia Article Text

Figure 2: The distribution of vertices appearing in short
random walks (2a) follows a power-law, much like the distri-

bution of words in natural language (2b).



Deepwalk Algorithm

Algorithm 1 DEEPWALK(G, w, d, 7, t)
Input: graph G(V, E) Algorithm 2 SkipGram(*I', W, w}

window size w

embedding size d 1: for each vj € W’”i d'D_ ,
walks per vertex v 2 for each u; € W, [J —w: ]+ ’w] do
walk length ¢ 3 J(®) = —log Pr(uy. | ®(v;))

Output: matrix of vertex representations ® € RIVI1*¢ 4 P =D — =% aJ

s Tt ialioatdam . V)xd . - B

1: Initialization: Sample & from ! 5 df

2: Build a binary Tree T from V end for

J: fori=0to~ do 6: end for

4: O = Shuffle(V)

5. for each v; € O do

6: W, = RandomW alk(G, v;,t)
T: SkipGram(®, W, w)

8 end for

9: end for




Graph Convolutional NN

Spectral based graph convolutional algorithms
take O(N"3) time complexity,so with first order
approximation of the ChebNet (which defines a
filter as Chebyshev polynomials of the diagonal
matrix of eigenvalues), the convolution
operation becomes
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Multilayer graph convolution
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Here HO is the convoluted output of the current
layer, HO is the input feature matrix, W is the
learnable parameter of the model.




Semi supervised learning using GCN

We have used the GCN algorithm for semi
supervised learning. Where there will be some
nodes labelled and other nodes unlabelled, we
have to predict the label for the unlabelled
nodes,

The loss function of the model uses only the
nodes with I|abels iInto consideration and
backpropagate the errors to learn W.




Combined Model

Word representations can be thought of as
features for the word, where each element of
the vector can be thought of as some feature.

So the output vector we got from DeepWalk
represent the structural features of each node.
We added these features also to the node’s
feature and made a new feature matrix, and
used that feature matrix for training the GCN.




Reasoning

In this figure, A and B are connected To
a subgraph which is highly Connected
then there will be lots of Similar
random walks starting from A and B, if
a real time data depends On such
structures of graph then these can be
modelled reasonably using Deepwalk
but deepwalk works only on the graph
not on the features, so using Deepwalk
along with GCN can help the model to
work with such structures and the
features of the nodes.

Figure 2.




Dataset  Accuracy
Cora 80.12%
Citeseer 67.89

The accuracy is comparable to the actual accuracy we get
using just the GCN, for citeseer the accuracy actually
dropped by 3%, one main reason for the accuracy drop is
the actual feature matrix for the data is in binary, but the
output given by DeepWalk is real valued feature so
integrating these features was difficulit.




Model Hyper Parameters

We used a hyperparameter C which is a real number. We
used this parameter to change the real valued DeepWalk
output to binary output, that is an elements value is less
than C then we made that to O else its 1. this parameter
was crucial for the the accuracy varies from 65% to 80%
by changing the value of C. Another Hyperparameter is H
the representation size of the DeepWalk output. When
testing the model we ran DeepWalk for 20 iterations due
to time constraints, which is very less had we ran for more
iterations accuracy might have increased.




About Dataset

CORA: The Cora dataset consists of 2708 scientific publications
classified into one of seven classes. The citation network consists of
5429 links. Each publication in the dataset is described by a 0/1-
valued word vector indicating the absence/presence of the
corresponding word from the dictionary. The dictionary consists of
1433 unique words.

CITESEER: The CiteSeer dataset consists of 3312 scientific
publications classified into one of six classes. The citation network
consists of 4732 links. Each publication in the dataset is described
by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary. The dictionary consists of

3703 unique words.




Other models surveyed

* GraphSage

* Large-scale Graph Convolution Networks
(LGCN)




Graph Sage

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
Input : Graph G(V, £); input features {x,, Vv € V}; depth K; weight matrices
W*F Wk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEy, Yk € {1, ..., K'}; neighborhood function N : v — 2V
Output : Vector representations z,, forallv € V

1 h) « x, VoeV;
2fork=1..K do

3 for v € V do

p h’,,) ¢ AGGREGATE,({h}~!,Vu € N'(v)});
. b « o (W’* : CDNCAT(hﬁ_l,hﬁf(w}])

6 end

7 hy « hy/||hg|o, Ve € V

8 end

9z, — h vvey




LGCN
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Figure 2: An illustration of a learnable graph convolutional layer (LGCL). We consider a node with 6 adjacent nodes. Each
node has three features, represented by a 3-component feature vector. This layer selects k = 4 nodes in the neighborhood and
employs a 1-D CNN to produce a new vector representation of five features for the central node, color-coded in orange. The
left part describes the process of selecting the k-largest values for each feature from neighboring nodes. It can be seen from the
graph that there are 6 neighbors. Since k = 4, for each feature, four largest values are selected from the neighborhood based on
the ranking. For example, the results of this selection process for the first feature is {9, 6, 5, 3} out of {9, 6, 5, 3, 0, 0}. By repeating
the same process for the other two features, we obtain (k + 1) 3-component feature vectors, including that of the orange node
itself. Concatenating them gives a 1-D data of grid-like structure, which has (k + 1) positions and 3 channels. Afterwards, a 1-D
CNN is applied to generate the final feature vector. Specifically, we use two convolutional layers with a kernel size of (k/2 + 1)
and without padding. The numbers of output channels are 4 and 5, respectively. In practice, the 1-D CNN can be any CNN
model, as long as the final output is a vector, serving as the new feature representation of the central node.




Thank You
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