Object Recognition in Neuromorphic images using Spiking SVM
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SVM and Growth Transform potential function

Primal Loss Function
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(2017) Extended Polynomial Growth Transforms for Design and Training of
Generalized Support Vector Machines, IEEE Transactions on Neural Network and
Learning Systems

Differentiating with respect to w and b:
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Substituting for w in alpha equation:
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Spiking SVM

Defining a function for differentiation of loss function:

Primal Loss Function
d
Z || wi || + z Z g (zir) Az 9(Zi) = Y(Zir)= Pix
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Substituting for w:
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Dual Potential function:
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Ahana Gangopadhyay and Shantanu Chakrabartty (2018),
Spiking, Bursting and Population Dynamics in a Network of
Growth Transform Neurons




Spiking SVM

Spiking SVM Architecture: Spikes and Dual Potential function:
Differentiation of Dual potential function of Data points (B)

on the boundary shows oscillating behavior
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Results (2D plot of CNN features)

Projection of High dimensional data onto Low Dimension: Single CNN layer:
Cluster plot of feature

Similarity Matrix
of original data
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2D data points randomly
projected onto 1D

Similarity Matrix of
randomly projected data

Randomly projected points are moved till the similarity
matrices of original data and projected data becomes equal




Result (Spiking SVM performance)

Accuracy of CNN and Spiking SVM ~ Accuracy of CNN and Spiking SVM
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Classification Boundary and Spiking Nature

Classification on CNN features in

Spiking Nature of Support Vector
2 Dimension

Spiking response of neuron 15

Neuron dynamics
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