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* Thus, database vendors have to create their own synthetic database that resembles the
client's database, qualitatively and quantitatively.

e But how?
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Notations

* q;:Select * from T where 30 < age < 60 and 4.5 < rating < 9.
* P;:30<age<60and4.5<rating<9
* ¢;=10/|T|

4.
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Problem Statement

* Consider a set of n observed queries (Py, ¢1), ..., (B,cy,) for T and let f(x) denote pdf of T.

e By definition, we have the following foreachi =1, ...,n

waBi f(.flf) — G

e GOAL : To build CEM of f(x) that satisfies the above n constraints and can estimate the

cardinality ¢’ of a new predicate P’.

* Next Step : To generate a synthetic Table T’ using CEM .
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Approach

* Uniform Mixture Model : Represent the population distribution f(x) as a weighted sum of

multiple uniform distributions, g,(x) forz =1, ..., m. Specifically,

F@) =3 w0

e g,(x)is the pdf (which is a uniform distribution) for the zt" subpopulation

* The support for g,(x) is represented by a hyper-rectangle G,

Reference : Yongjoo Park, Shucheng Zhong, Barzan Mozafari “QuickSel: Quick Selectivity Learning with Mixture Models”, SIGMOD 2018




Approach
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Approach

 The optimal parameter w for the model is obtained by solving

argmin /eB (f(x) — ﬁ)de

w

such that/ flx)de =c¢;;, Yi=1,..n
B;

f(z) =0
* The approximate solution of the above problem is given by:
wH = (Q+ MATA)" ' NAc  where

G NGy |B; NG|
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cae,l W= g,
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Experiments

DATASET : Instacart [sale records of an online grocery store]
* TABLE orders(...., order_hour_of the_day, days_since_prior)

e f#rows = 3.2 million

* Attributes with ranges (0,23) and (0,31)
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Experiments

Actual vs Estimated Cardinalities
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Experiments

DATASET : IMDB (movie records)
 Table: aka_title (id, kind_id, movie_id, production_year)
* Hrows = 4.3 million

e 4 attributes with ranges (1, 4.3 million), (1, 7), (0, 3.4 million) and (1875, 2022)




Experiments

Actual vs Estimated Cardinalities (aka_title)
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Experiments

Estimated Cardinalities

Actual vs Estimated Cardinalities (aka_title)
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Database generation

« Total points = Sw,*|T| = |T|

——n--—ﬁ o
LE_|_H=$=I='= * Generate w*|T| points in each hyper-rectangle.

* More the number of overlaps in a region, more
points it will contain.

Subpopulation ranges




Our Contribution

* Implemented CEM using the mixture model approach.

* Achieved similar accuracy as the paper achieved.

* |dentified the problem of good training data generation and how to tackle it.
* Compared our model’s performance with neural network.

* Suggested an approach for database generation.




Future work

* Solve the zero-cardinality problem by creating sub-populations that cover the entire domain space.

e Empirical generation of synthetic table and comparison with original table.
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