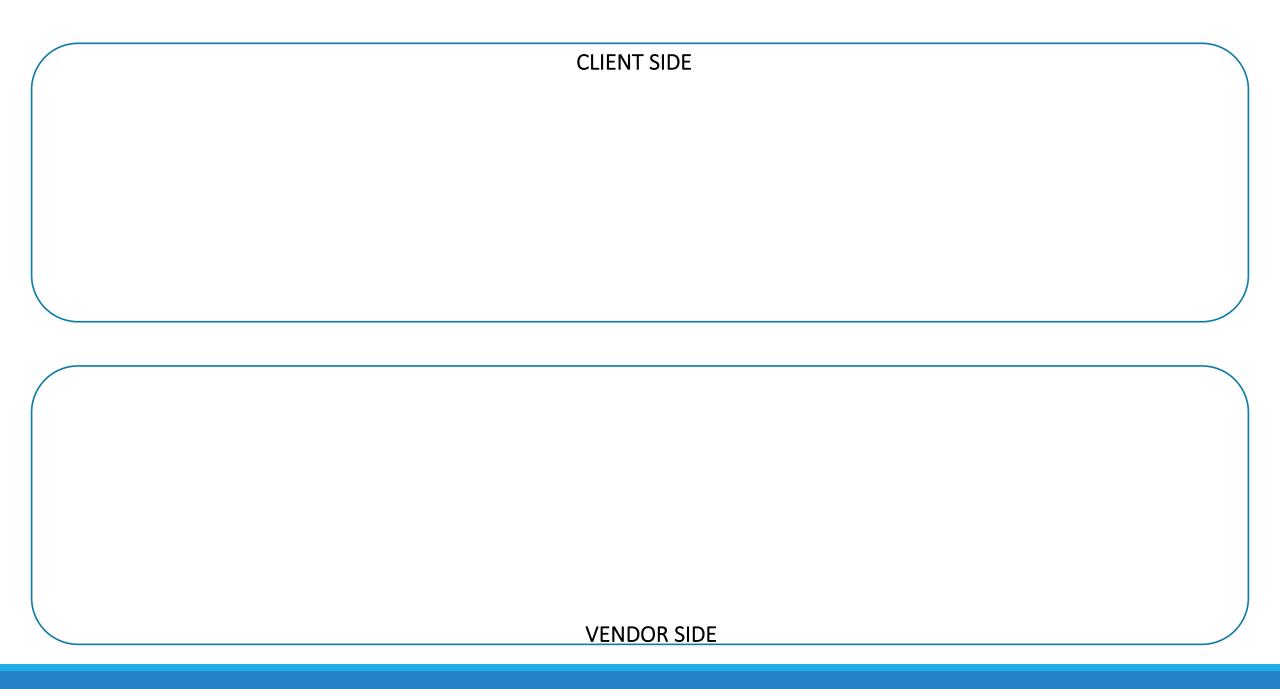
Mimicking Data By Learning Patterns on Data Constraints

By Kapil Khurana & Vishal Goel


• Database vendors need to test their engine on real world databases.

- Database vendors need to test their engine on real world databases.
- But database clients cannot send their data because of privacy issues and huge transfer cost.

- Database vendors need to test their engine on real world databases.
- But database clients cannot send their data because of privacy issues and huge transfer cost.
- Thus, database vendors have to create their own synthetic database that resembles the client's database, qualitatively and quantitatively.

- Database vendors need to test their engine on real world databases.
- But database clients cannot send their data because of privacy issues and huge transfer cost.
- Thus, database vendors have to create their own synthetic database that resembles the client's database, qualitatively and quantitatively.

• But how?

CLIENT SIDE

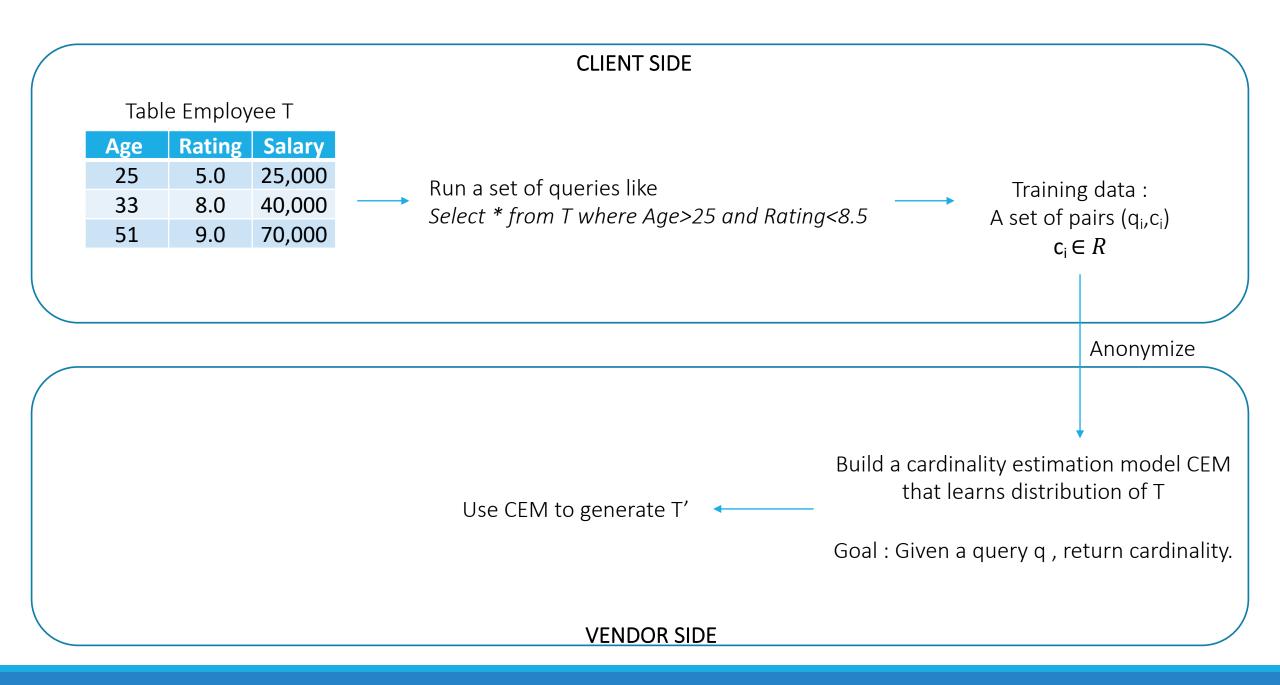
Table Employee T

Age	Rating	Salary
25	5.0	25,000
33	8.0	40,000
51	9.0	70,000

VENDOR SIDE

CLIENT SIDE

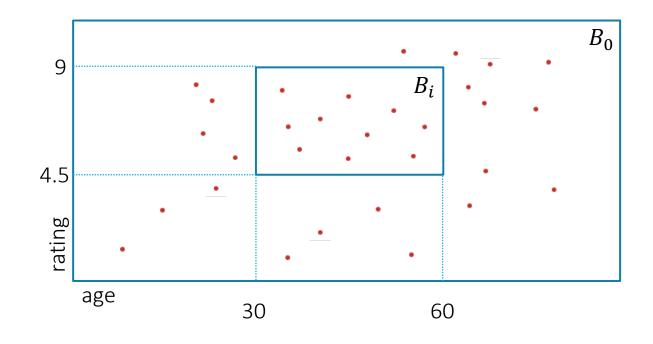
Table Employee T


Age	Rating	Salary
25	5.0	25,000
33	8.0	40,000
51	9.0	70,000

Run a set of queries like Select * from T where Age>25 and Rating<8.5

VENDOR SIDE

\bigcap				CLIENT SIDE	$\overline{}$
	Tabl	e Employ	vee T		
	Age		Salary		
	25 33	5.0 8.0	25,000 40,000	 Run a set of queries like Training data :	
	51	9.0	70,000	Select * from T where Age>25 and Rating<8.5 A set of pairs (q_i,c_i) $c_i \in R$	
				$c_i \in K$	
				VENDOR SIDE	


			CLIENT SIDE			
Table	e Employ	vee T				
Age	Rating	Salary				
25	5.0	25,000	Run a set of queries like Trainir	ng data :		
33	8.0	40,000		pairs (q_i, c_i)		
51	9.0	70,000	C _i ∈			
				Anonymize		
			Build a cardinality estima that learns distrib			
			Goal : Given a query q , r	eturn cardinality.		
			VENDOR SIDE			

			CLIENT SIDE	
	Table T			
Age	Rating	Salary		
25	5.0	25,000	Run a set of queries like Traini	ng data :
33	8.0	40,000		pairs (q _i ,c _i)
51	9.0	70,000		
				Anonymize
	Table T'			↓ ↓
Age	Rating	Salary	Build a cardinality estim	ation model CEM
23	4.5	23,000	Use CEM to generate T'	oution of T
30	7.8	44,000		
55	8.7	67,000	Goal : Given a query q ,	return cardinality.
	$q_i(T') = c$	i		
C	l′(T′) ≈ q′(T)	VENDOR SIDE	

Notations

- q_i : Select * from T where $30 \le age \le 60$ and $4.5 \le rating \le 9$.
- P_i : 30 \leq age \leq 60 and 4.5 \leq rating \leq 9
- $c_i = 10/|\top|$

• Consider a set of n observed queries $(P_1, c_1), \dots, (P_n c_n)$ for T and let f(x) denote pdf of T.

- Consider a set of n observed queries $(P_1, c_1), \dots, (P_n c_n)$ for T and let f(x) denote pdf of T.
- By definition, we have the following for each i = 1, ..., n

$$\int_{x \in B_i} f(x) = c_i$$

- Consider a set of n observed queries $(P_1, c_1), \dots, (P_n c_n)$ for T and let f(x) denote pdf of T.
- By definition, we have the following for each i = 1, ..., n

$$\int_{x \in B_i} f(x) = c_i$$

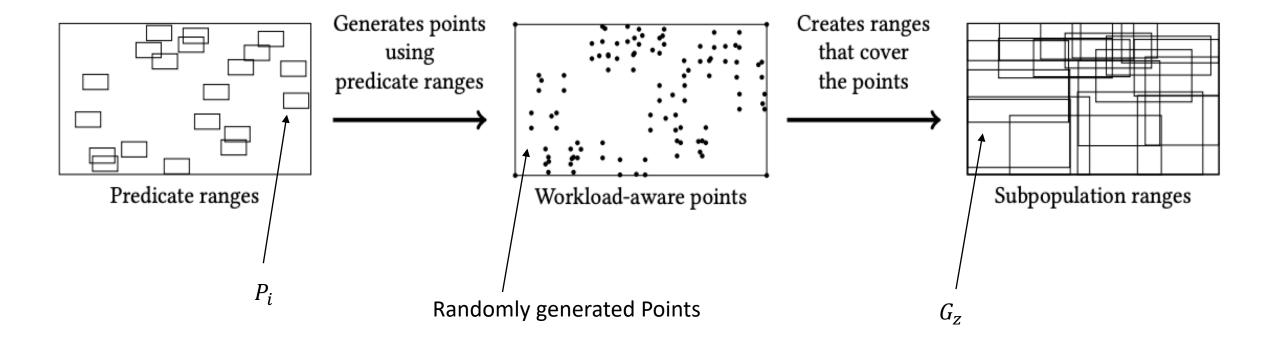
• GOAL : To build CEM of f(x) that satisfies the above n constraints and can estimate the cardinality c' of a new predicate P'.

- Consider a set of n observed queries $(P_1, c_1), \dots, (P_n c_n)$ for T and let f(x) denote pdf of T.
- By definition, we have the following for each i = 1, ..., n

$$\int_{x \in B_i} f(x) = c_i$$

- GOAL : To build CEM of f(x) that satisfies the above n constraints and can estimate the cardinality c' of a new predicate P'.
- Next Step : To generate a synthetic Table T' using CEM .

• Uniform Mixture Model : Represent the population distribution f(x) as a weighted sum of multiple uniform distributions, $g_z(x)$ for z = 1, ..., m. Specifically,


$$f(x) = \sum_{z=1}^{m} w_z g_z(x)$$

Reference : Yongjoo Park, Shucheng Zhong, Barzan Mozafari "QuickSel: Quick Selectivity Learning with Mixture Models", SIGMOD 2018

• Uniform Mixture Model : Represent the population distribution f(x) as a weighted sum of multiple uniform distributions, $g_z(x)$ for z = 1, ..., m. Specifically,

$$f(x) = \sum_{z=1}^{m} w_z g_z(x)$$

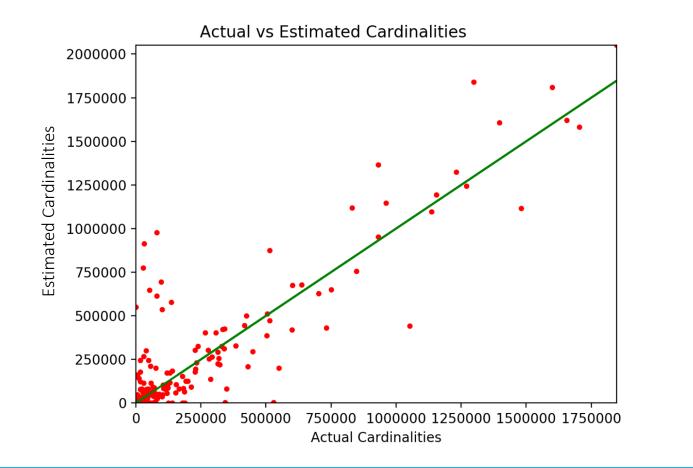
- $g_z(x)$ is the pdf (which is a uniform distribution) for the z^{th} subpopulation
- The support for $g_z(x)$ is represented by a hyper-rectangle G_z

• The optimal parameter *w* for the model is obtained by solving

$$\begin{aligned} \underset{w}{\operatorname{argmin}} \quad & \int_{x \in B_0} (f(x) - \frac{1}{|B_0|})^2 dx \\ such \quad that \int_{B_i} f(x) dx = c_i, \quad \forall i = 1, .., n \\ & f(x) \ge 0 \end{aligned}$$

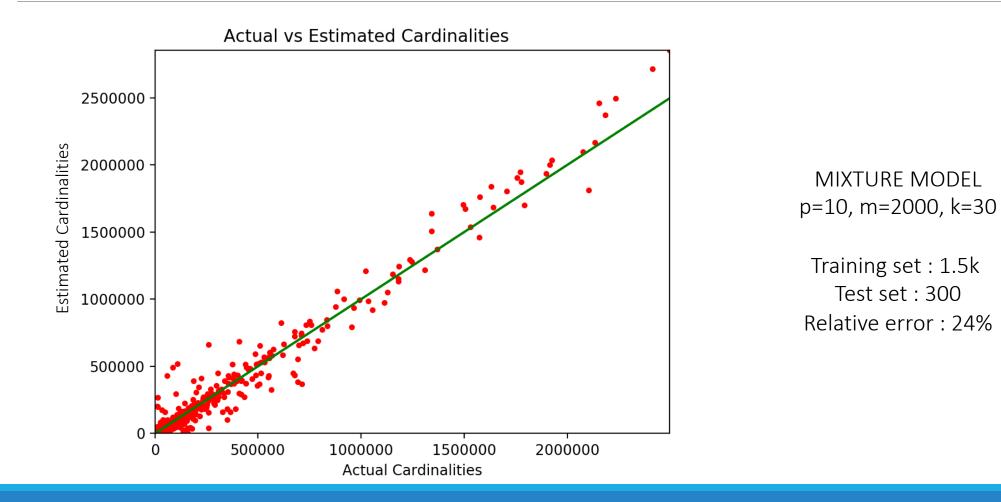
• The optimal parameter w for the model is obtained by solving

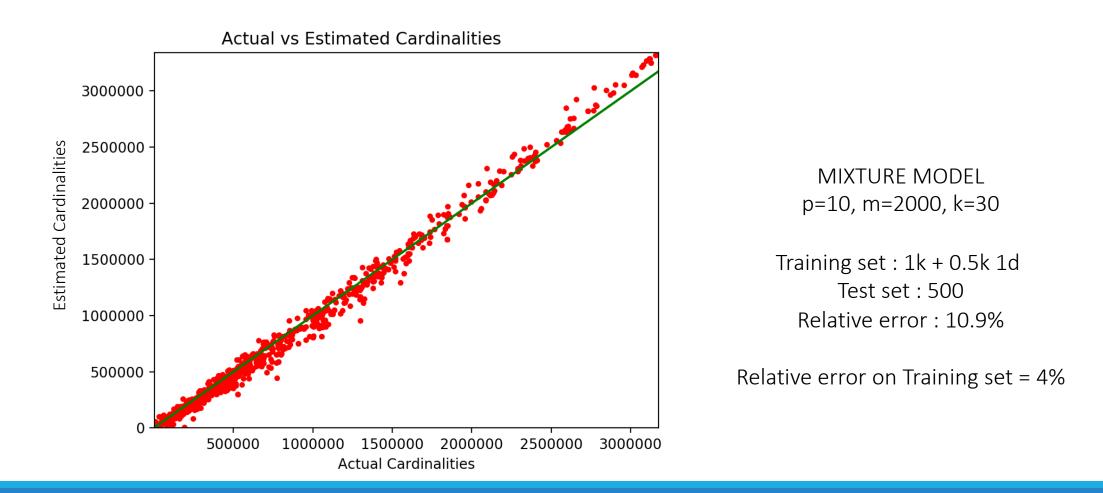
$$\begin{aligned} \underset{w}{\operatorname{argmin}} \quad & \int_{x \in B_0} (f(x) - \frac{1}{|B_0|})^2 dx \\ such \quad that \int_{B_i} f(x) dx = c_i, \quad \forall i = 1, .., n \\ & f(x) \ge 0 \end{aligned}$$


• The approximate solution of the above problem is given by:

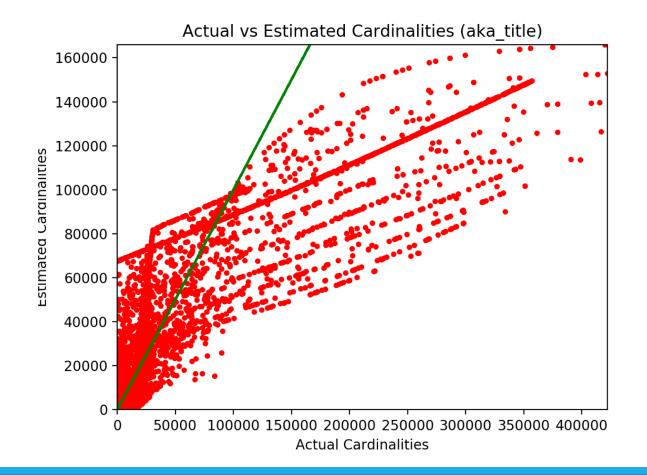
$$\mathbf{w}^* = (Q + \lambda A^T A)^{-1} \lambda A c \quad where$$

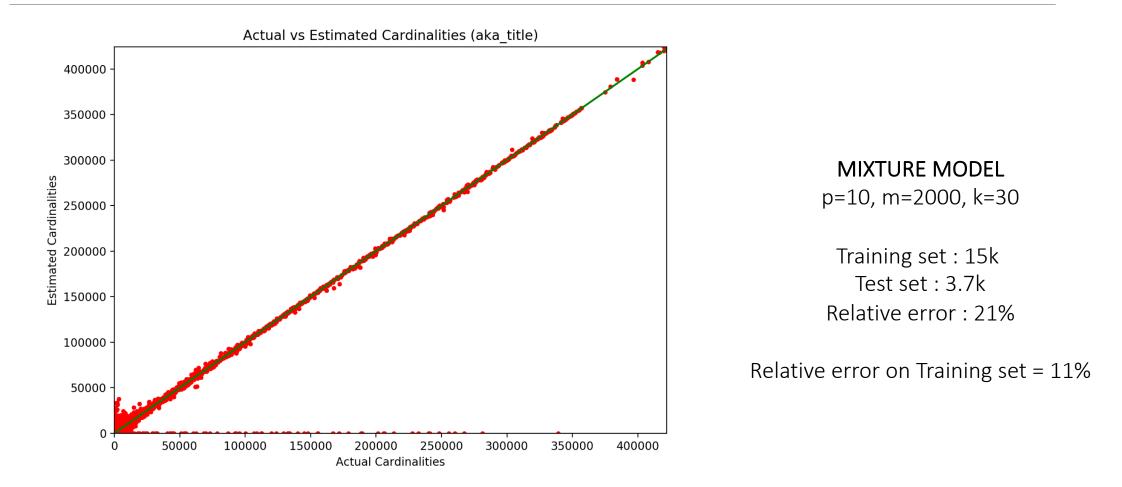
$$(Q)_{ij} = \frac{|G_i \cap G_j|}{|G_i||G_j|} \quad (A)_{ij} = \frac{|B_i \cap G_j|}{|G_j|}$$


DATASET : Instacart [sale records of an online grocery store]

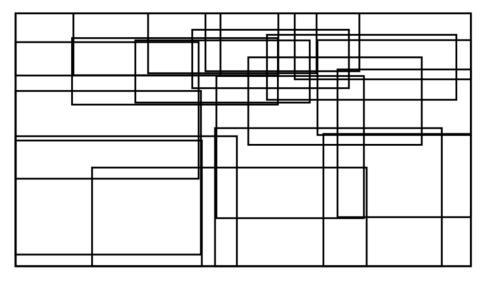

- TABLE orders(...., order_hour_of_the_day, days_since_prior)
- #rows = 3.2 million
- Attributes with ranges (0,23) and (0,31)

MIXTURE MODEL p=10, m=2000, k=30


Training set : 1k Test set : 200 Relative error : 34%


DATASET : IMDB (movie records)

- Table : aka_title (id, kind_id, movie_id, production_year)
- #rows = 4.3 million
- 4 attributes with ranges (1, 4.3 million), (1, 7), (0, 3.4 million) and (1875, 2022)



NEURAL NETWORK 1 hidden layer with 10 nodes ReLU activation function

> Training set : 15k Test set : 3.7k Relative error : 53%

Database generation

Subpopulation ranges

- Generate w* |T| points in each hyper-rectangle.
- Total points = $\sum w_i^* |T| = |T|$
- More the number of overlaps in a region, more points it will contain.

Our Contribution

- Implemented CEM using the mixture model approach.
- Achieved similar accuracy as the paper achieved.
- Identified the problem of good training data generation and how to tackle it.
- Compared our model's performance with neural network.
- Suggested an approach for database generation.

Future work

- Solve the zero-cardinality problem by creating sub-populations that cover the entire domain space.
- Empirical generation of synthetic table and comparison with original table.

