Single Shot Object Detection in Aerial Images

Presented By: Mohd Haroon Ansari Pooja Gupta Maj. Govind Presented To: Dr. Ambedkar Dukkipati

AGENDA

- Problem
- Recent Work
- State of the Art
- Overview of the Components
- Details of the Work
- Results
- References

Problem Statement

- Geospatial object detection in Satellite Images
- Motivation:
 - Intrusion detection in Defence
 - Automatic Identification System(AIS)
 - Traffic Analysis
 - Many more applications

Recent Work

R-CNN

- Use CNN for feature representation
- Use SVM for classification

Faster R-CNN

- Use RPN for region proposal
- Use R-CNN for object detection

YOLO

- Frame object detection as regression problem
- Detect object using single neural network

SSD

- Predicts score of presence of object in box
- Handles objects of various size

State of the Art

- Single Shot Detection with Multiple Feature Fusion
- Use concepts from YOLO an SSD
- Faster as compared to YOLO and SSD
- Accuracy better than YOLO and SSD

Overview of the Components

Base Feature Extractor

Multi-Scale Feature Fusion Detector

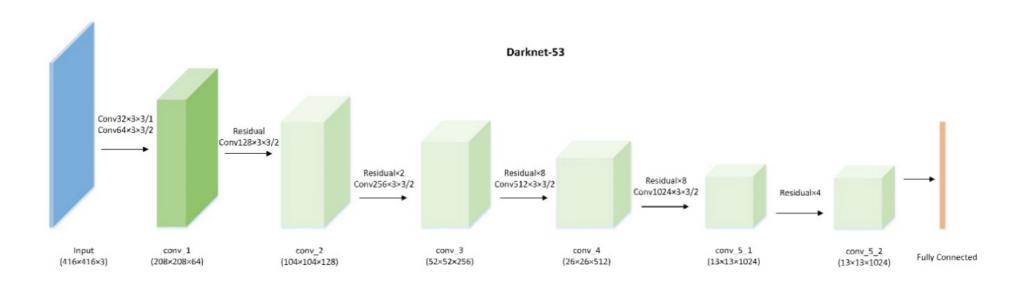
Multi Scale Feature Fusion Module

Anchor Priors and Predictions

Base Feature Extractor

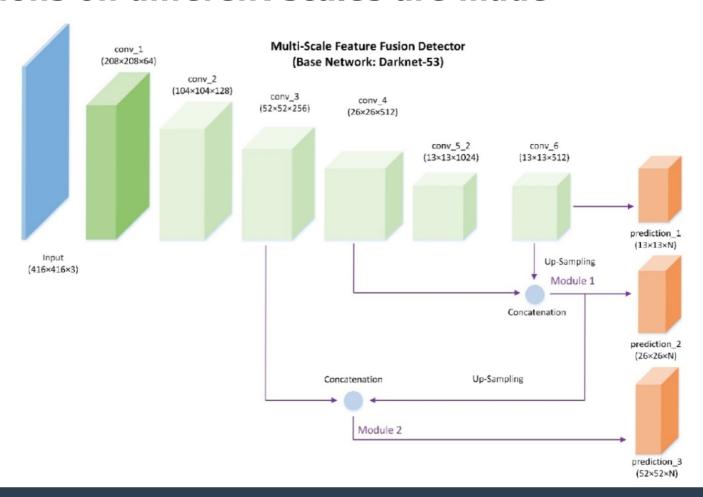
DarkNet-53

- 53 Convolutional Layer without pooling any layer
- 23 residual blocks
- Use Leaky ReLU as activation function

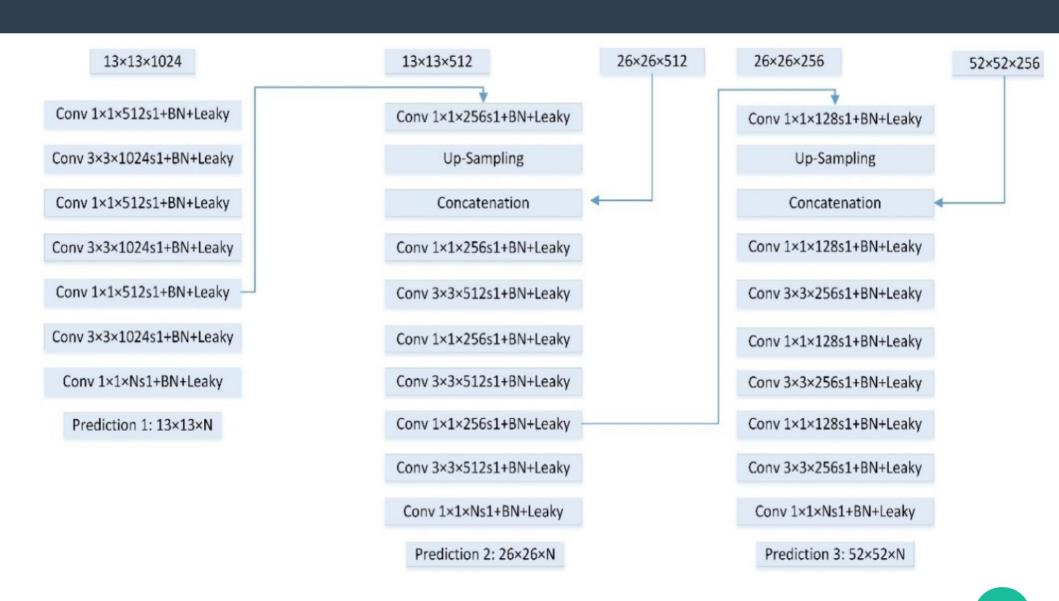


Multi Scale Feature Fusion Detector

- Combines Features of Different Scale
- Predictions on different scales are made

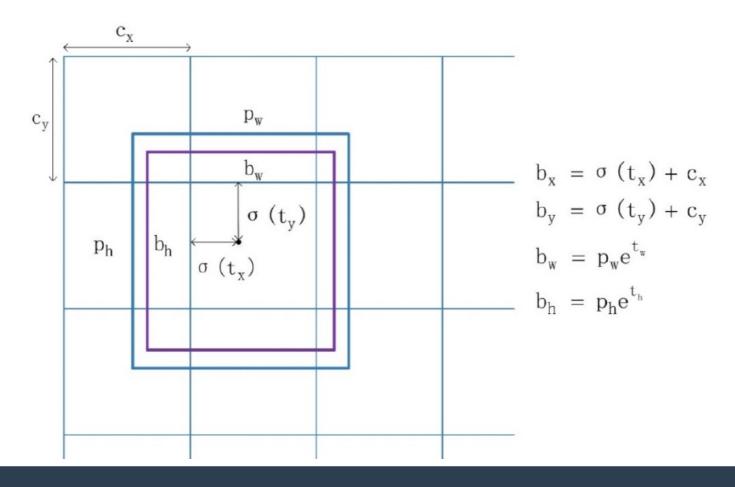


Multi Scale Feature Fusion Module



Anchor Prior and Predictions

- 3 Anchor priors are used for each of three predictions
- Anchor priors obtained using k-means clustering



Results

 Achieves high accuracy as compared to recently proposed models

Method	Faster R-CNN	SSD	YOLO2	Proposed	Proposed (Soft NMS)
Pretrained backbone	ResNet50	VGG16	Darknet-19	Darknet-53	Darknet-53
Airport	0.911	0.788	0.598	0.839	0.847
Helicopter	0.876	0.893	0.917	0.946	0.946
Plane	0.673	0.819	0.813	0.897	0.904
Oiltank	0.645	0.898	0.909	0.920	0.922
Warship	0.759	0.755	0.695	0.793	0.826
Mean AP	0.773	0.831	0.786	0.879	0.890

References

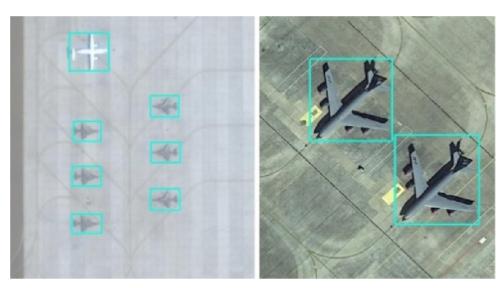
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv, 2013; arXiv:1311.2524.
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137-1149.
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv, 2015; arXiv:1506.02640.
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.;
 Berg, A.C. SSD: Single Shot MultiBox Detector.
- Zhuang, Shuo, et al. "A Single Shot Framework with Multi-Scale Feature Fusion for Geospatial Object Detection." Remote Sensing 11.5 (2019): 594.

Thank You

Images with their the corresponding annotated bounding boxes

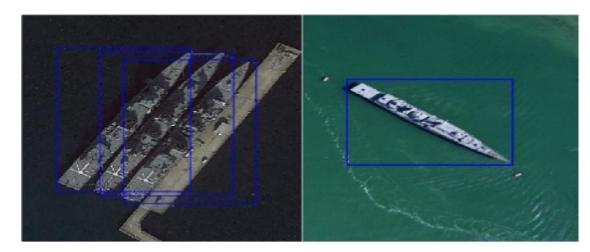
Airport

Plane



Oiltank

Warship



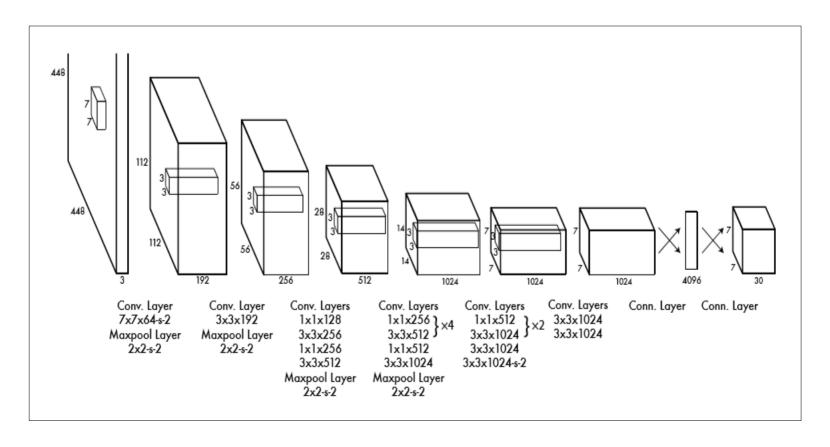
Helicopter



Remote-Sensing Dataset for Geospatial Object Detection (RSD-GOD)

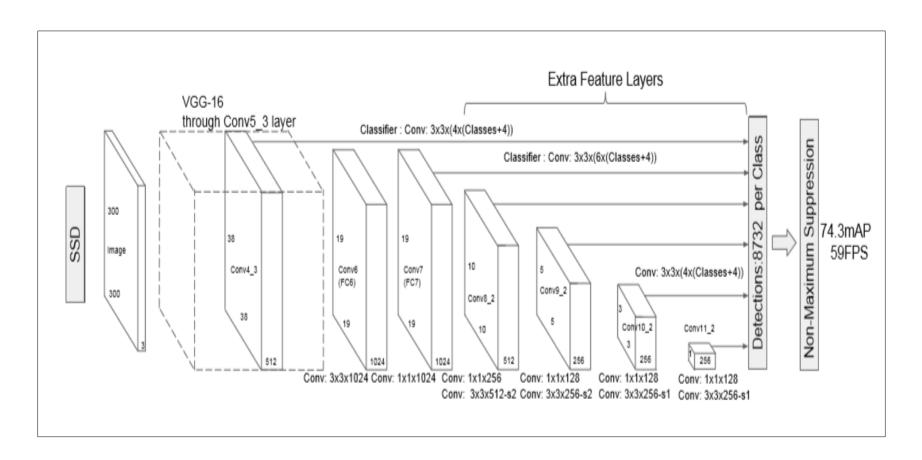
- RSD-GOD is a large scale dataset for , that consists of 5 different categories with 18,187 annotated images and 40,990 instances.
- Considering the applications in military field, five categories are selected to be annotated, including plane, helicopter, oil tank, airport and warship.
- RSD satisfies following three properties :
 - Rich background information
 - Multiple resolutions and viewpoints
 - Dense objects.

You Only Look Once(YOLO)



The Architecture : Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Single Shot MultiBox Detect(SSD)



Architecture of SSD compared to YOLO: It adds several feature layers to the end of a base network, which predict the offsets to default boxes of different scales and aspect ratios and their associated confidences. SSD with a 300×300 input size significantly outperforms its 448×448 YOLO counterpart in accuracy on VOC2007 test while also improving the speed.

Loss Function

$$L_{overall} = L_{loc} + L_{conf} + L_{cla}$$

$$L_{loc} = \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 + (w_i - \hat{w}_i)^2 + (h_i - \hat{h}_i)^2 \right]$$

$$L_{conf} = \lambda_{obj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} P^{obj} (c_i - \hat{c}_i)^2 + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} (1 - P^{obj}) (c_i - \hat{c}_i)^2$$

$$L_{cla} = -\lambda_{cla} \sum_{i=0}^{S^2} P^{obj} \log(\hat{p}_i)$$