
E0-270 Project on
Neural Dialog

Generation
Siddharth Jha, Vinayak, Divij Mishra

Why is dialogue generation tough?

● The aim is to generate more and more human-like responses to a given utterance.

● This involves-
○ Fact matching
○ Ability to correlate information
○ Long term memory
○ Presence of knowledge base

Papers read

1. A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion
(Jul 2015) (Sordoni, Bengio, et. al.)

2. Building End-to-End Dialogue Systems Using Generative Hierarchical Neural Networks
(Apr 2016) (Serban, Sordoni, et. al.)

3. Adversarial Learning for Neural Dialogue Generation
(Sep 2017) (Li, Monroe, et. al.)

4. End-to-End Adversarial Learning for Generative Conversational Agents
(Nov 2017) (Ludwig)

5. Knowledge Diffusion for Neural Dialogue Generation
(Jul 2018) (Liu, Chen, et. al.)

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Ideas:
1. Generative probabilistic model for query prediction and auto-completion
2. Use of HRED (Hierarchical Recurrent Encoder-Decoder) architecture to encode context
3. General model, applicable outside of query-prediction setting - in particular, applicable to dialogue

generation.

Proposed advantages:
1. Goes beyond query co-occurrence to avoid data sparsity and predict long-tail queries
2. Increased context-awareness
3. Synthetic suggestions

Key idea:
1. Obtain vector embedding of words.
2. Obtain vector embedding of a query by sequentially averaging across the words.

This is done by the query-level RNN.
3. Additional session-level RNN, which iterates over all the query vectors to output a single vector

embedding of the query session till the present.
4. Use an RNN as a decoder to translate this session vector into a response vector.

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Architecture:
HRED:

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Architecture:
Query-level encoder:

1. The RNN sequentially reads a query, updating its hidden state after each word.
2. It uses the GRU function to generate the next hidden state.
3. Outputs the query vector.

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Side note on GRU:
Gated Recurrent Unit: It’s a set of operations that generates a hidden state using present word embedding
and previous hidden state.

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Architecture:
Session-level encoder:

1. Acts like the query-level encoder.
2. Uses an RNN (again, with GRU) to sequentially read the query vectors and output the session vector.

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Architecture:
Query decoder:

1. Uses the session state to generate the next query.
2. Uses a non-linear function to project the session-state into the decoder-space.

3. Using this state as the initial hidden state of the new query, it uses an RNN (with GRU) to obtain the
next hidden state given the next word.

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Architecture:
Query-decoder continued:

1. The probability for a word to be the next word is given by the softmax function:

2. The word with maximum value for the function is chosen.

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Learning:
1. Learns the parameters for the 3 GRUs and the parameters involved in finding the probability of a word
2. Done by maximising the log likelihood of a session of queries
3. The objective function for maximisation -

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Evaluation:
a) Sample size->18,000 sessions

(taken from AOL)
b) Test data-> 9,500 sessions
c) Training data->7,500 sessions

(Wrong values?)

A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion
(July 2015) (Sordoni, Bengio et. al.)

Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models
(Apr 2016) (Serban, Sordoni, et. al.)

Ideas:
1. Generative probabilistic model for dialogue generation
2. Uses the previously described HRED architecture
3. Captures more information from a dialogue with a bidirectional encoder
4. Provides an end-to-end model

Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models
(Apr 2016) (Serban, Sordoni, et. al.)

Architecture:
1. Basic architecture similar
2. Encode an utterance twice,

in both directions, take average

Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models
(Apr 2016) (Serban, Sordoni, et. al.)

Pre-training:
1. To find a good set of initial hyper-parameters, the HRED was pre-trained on the Q-A SubTle

dataset, constructed from movie subtitles.
2. Word embeddings initialized from Word2Vec, trained on the Google News dataset.
3. To find the word embedding parameters, the word embedding is decomposed into a smaller

embedding matrix. Learning is performed on this matrix.

Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models
(Apr 2016) (Serban, Sordoni, et. al.)

Evaluation metrics:
1. Perplexity: Measures the ability of the model to form connection between multiple sets of

words

2. Word classification error: Measures the ability of the model to generate frequently used
words, defined as the number of words in the dataset this model has predicted incorrectly
divided by the total number of words in the dataset.

Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models
(Apr 2016) (Serban, Sordoni, et. al.)

Adversarial Learning for Neural Dialogue Generation
(Sep 2017) (Li, Monroe, et. al.)

Ideas:
1. Draw intuition from the Turing test, by using a generative model, and a discriminative model which

tries to distinguish between machine-generated and human-generated dialogues.
2. Uses the discriminator output as reward for the generative model.

Proposed advantages:
1. Unlike manually defined reward systems, this reward system will cover all crucial aspects of dialogue

generation, like coherence and informativeness.

Adversarial Learning for Neural Dialogue Generation
(Sep 2017) (Li, Monroe, et. al.)

Architecture:
Adversarial REINFORCE:

1. Generative model G:
Similar to the decoder from the last paper, uses RNNs to sequentially generate an utterance given the
dialogue history.

2. Discriminative model D:
Takes a sequence of utterances as input and returns a label, indicating whether the input was
generated by a human or machine. Uses an HRED to encode the input and a 2-class softmax function
to calculate the probability of each class.

Adversarial Learning for Neural Dialogue Generation
(Sep 2017) (Li, Monroe, et. al.)

Architecture:
Adversarial REINFORCE continued:

1. Utterances classified as human-generated by D are used as rewards for G, according to the
REINFORCE algorithm (Williams, 1992).

2. The gradient is approximated by:

3. D is simultaneously updated with a human-generated dialogue as a positive example, and the actual
machine-generated dialogue as a negative example.

Adversarial Learning for Neural Dialogue Generation
(Sep 2017) (Li, Monroe, et. al.)

Architecture:
Reward for Every Generation Step (REGS):

1. A way to give more weight to certain tokens of an utterance - “I don’t know.”
a. Monte-Carlo search
b. Training discriminator to assign rewards to partially decoded sequences.

2. Found that MC performed better, although it required more training time.
3. Teacher forcing:

1. The training system is fragile
2. Propose to feed the discriminator with human-generated dialogues and force it to return 1, to

stabilise the learning process.

End-to-End Adversarial Learning for Generative
Conversational Agents
(Nov 2017) (Ludwig)

Key idea:
1. Encodes the last few utterances of the conversation into a ‘thought’ vector.
2. Concatenates the thought vector and the input embedding vector, and uses that while

generating each token of the output sentence.
3. This ensures context preservation.

End-to-End Adversarial Learning for Generative
Conversational Agents
(Nov 2017) (Ludwig)

Architecture:
1. Converts the one-hot representations of the words of the input and output utterances to vectors of

the embedding layer.

2. Uses 2 separate LSTMs to process these vectors, since one is related to context and the other to the
incomplete answer.

End-to-End Adversarial Learning for Generative
Conversational Agents
(Nov 2017) (Ludwig)

Architecture:
1. The vectors are then concatenated and processed by a ReLU activation and a softmax function to

output the probabilities for the next token.

2. As earlier, the token with the maximum probability is chosen.

A key advantage of this model is that is prevents short answers with high prior probability.

Key contributions-

1. The code was adopted from its python2 version and appropriately implemented in its python 3
version.

2. A new data set was chosen to perform testing, training and experiments.
3. The data set processed to be in QA format.
4. Training was done by bootstrapping on authors weights and by training the network from

scratch.
5. The architecture was modified by using GRU instead of LSTM.
6. The effect of vocabulary on data was explored.

Key Results

1. Better results when bootstrapped weights were used
2. Use of data independent vocabulary (as proposed by author) improves performance.
3. Better performance on non factoid sentence.
4. Similar performance of GRU and LSTM architectures.
5. The sentences containing words from the traininig data generated more meaningful responses.

Knowledge Diffusion for Neural Dialog generation
(Jul 2018) (Liu, Chen, et. al.)

Key ideas:
a) Use a knowledge base to match facts and diffuse entity, providing an

explicit framework.
b) Using entity diffusion
c) Session RNN.

Knowledge Diffusion for Neural Dialog generation
(Jul 2018) (Liu, Chen, et. al.)

Architecture:
Encoder:
1. Encodes an utterance into a vector representation.
2. In this case, 2 vector representations.
3. One hidden state fed to knowledge retriever other to context RNN

Knowledge Diffusion for Neural Dialog generation
(Jul 2018) (Liu, Chen, et. al.)

Architecture:
Knowledge retriever:
1. Entity recognition in input and extraction of all relevant knowledge triples
2. Entities in knowledge triples assigned scores.(depends on knowledge triples)
3. A weighted new hidden state is created using these scores.

Knowledge Diffusion for Neural Dialog generation
(Jul 2018) (Liu, Chen, et. al.)

Architecture:
Knowledge Retriever:
1. Entity diffusion
2. After fact matching, additional entities are extracted .
3. These entities depend on the hidden state obtained by fact matching.
4. Each newly extracted entity is assigned a score(which indicates its

relevance)
5. A final hidden state is extracted from these entities(weighted over scores)

Knowledge Diffusion for Neural Dialog generation
(Jul 2018) (Liu, Chen, et. al.)

Architecture:
Context RNN:
1. Takes a hidden state from encoder as input.
2. Uses a non linear activation map.
3. Iteratively adds this hidden state to session hidden state.
4. Thus, stores contextual info.

Knowledge Diffusion for Neural Dialog generation
(Jul 2018) (Liu, Chen, et. al.)

Architecture:
Decoder:
1. Generates maximum probability words conditioned on previous states.
2. These states are from the session RNN and knowledge retriever.

Knowledge Diffusion for Neural Dialog generation
(Jul 2018) (Liu, Chen, et. al.)

Evaluation:

Thank You

