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What is Reinforcement Learning

● Reinforcement learning is an area of machine learning concerned with how 
software agents ought to take actions in an environment so as to maximize some 
notion of cumulative reward.
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Policy and Value function based learning

● A value function tells us what is the expected sum of rewards given 
a state and an action (i.e) expectation of the cumulative sum of 
rewards given a state and an action.

● Policy function maps a state to an action. It assigns a probability 
distribution over all actions given a state.

● Given policy πθ(s,a) with parameters θ, find best θ



Objective

● A RL agent is trained to perform a single task using a single reward 
function but it doesn’t scale up

● Sparse reward problem : When a RL agent learns from a sparse 
rewards, it either wins or loses and has no intermediate rewards

● A method is proposed to efficiently train a policy to achieve all 
possible goals
○ Discover all feasible goals
○ Focus on goals currently giving better learning



Goal Parametrized Reward Function
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Challenges and Approach

● Training directly on the goal distribution g ~ p
g
(.) is not efficient

○ Many goals might be infeasible or too hard for the current 

policy π
i

○ Other goals might already be mastered by the current policy π
i

○ Solving some goals first might help for others

● Instead, train on Goals Of Intermediate Difficulty for π
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Generative and Adversarial Networks

● In GANs, the idea is to sample from a simple distribution 

(say,z∼N(0,I)) and then learn a complex transformation from this to 

the training distribution.

● We use a “goal generator” neural network G(z)to generate goals g 

from a noise vector z

● We train G(z) to uniformly output goals in GOIDi using a second 

“goal discriminator” network D(g) which distinguish goals that are in 

and not in GOID
i



LSGAN

● When updating the generator, sigmoid cross entropy loss function 

will cause the problem of vanishing gradients.

● To remedy this LSGAN uses least square loss function
○ A

Where a is the label for fake data (-1)

 b is the label for real data (1)



Algorithm



Experiment 1: Maze Ant Locomotion

● Objective is to train an ant to learn the U shape maze

● The mujoco environment for the experiment which is a physics 

simulation environment

● The maze with ant setting is used which gives 8 dimensional action 

space involving joints and positional data.

● Goals are (x,y) position of the center of mass of the ant agent.



Maze Ant Results



Experiment 2: Ant Multi-path 
Locomotion

● Objective : The ant is trained on a multi path maze

● The environment was updated according to the structure of the 

maze.

● Number of iterations is increases since the area to be covered by the 

agent has increased.



Ant Multi-path Locomotion Result



Spiral Maze



Conclusion

● This proposed RL algorithm trains a single policy on a variety of 

goals, under sparse rewards.

● Since the curriculum is automatic, it dynamically adapts to the 

current performance of the agent

● We used GAN to automatically generate goals for our policy that are 

always at a appropriate level of difficulty
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