Deep Generative Models with focus on StackGAN

Gururaj K, Sakya Basak, Rahul Bansal, Rajat Nagpal

11ISc Bangalore

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 1/23

Introduction

@ Generative Models models P(Y, X) or joint probabilty of class and
observed data.

@ Modelling joint distribution allows us to generate (X, Y) pairs of high
probability.

© It is difficult to model joint distribution because of many intractable
probabilistic computations that arise in maximum likelihood
estimation and related strategies.

@ In 2014, lan J. Goodfellow proposed a new framework for estimating
generative models via an adversarial process, in which they described
procedure to train two models: Generator and Discriminator.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 2/23

Real image ——0O X

¢ —{ e 0

max V(D) = Eznpu,(@)[108 D(@)] + Eznp, (2)[log(1 — D(G(2)))]

recognize real images better recognize generated images better

minV(G) = Eznp,(x)[log(l — D(G(2)))]

Optimize G that can fool the discriminator the most.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs

3/

23

Conditional GAN

Real image, y ——0O Xy

Discriminator

D(x)
Generator

y=3, 2=(0.3,02,-0.6,...) (M) &

eIl =3 3 ’D\ Dix,)
¥~ U(0,9) or —>» 0.6

z~ U1,1) " %

v=8, -0

G(z) ¥

y=5, 1=(0.1,0.1,02,..) —=> 5

Generator Discriminator

minmax V (D, G) = Eqnpy () 108 D(2(Y)] + Eznp, () llog(1 — D(G(2[y))))-

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 4/23

DCGAN Architecture

Layer (type) Output Shape Param #
dense (Dense) (None, 12544) 1254400
batch normalization v1 (Batc (None, 12544) 50176
Teaky re_lu (LeakyReLU) (None, 12544) 0
reshape (Reshape) (None, 7, 7, 256) °
conv2d_transpose (ConvaDTran (None, 7, 7, 128) 819200
batch normalization vi 1 (Ba (None, 7, 7, 128) 512
Teaky re_lu_1 (LeakyReLU) (None, 7, 7, 128) o
convad_transpose 1 (Conv2DTr (None, 14, 14, 64) 204860
batch normalization vi 2 (Ba (None, 14, 14, 64) 256
Teaky re lu_2 (LeakyRelU) (None, 14, 14, 64) o
conv2d_transpose 2 (Conv2DTr (None, 28, 28, 1) 1600

Total params: 2,330,944
Trainable params: 2,305,472
Non-trainable params: 25,472

Generator Summary

ruraj K, Sakya

sak, Rahul Bansal, Rajat

Layer (type) output Shape Param #
convzd (Conv2D) (None, 14, 14, 64) 1664
Teaky re lu 3 (LeakyRelU) (Nome, 14, 14, 64) g
dropout (Dropout) (None, 14, 14, 64) g
conv2d_1 (Conv2D) (None, 7, 7, 128) 204928
Teaky re lu 4 (LeakyRelU) (Nome, 7, 7, 128) g
dropout_1 (Dropout) (None, 7, 7, 128) g
flatten (Flatten) (None, 6272) 0
dense 1 (Dense) (None, 1) 6273

Total params: 212,865
Trainable params: 212,865
Non-trainable params: @

Discriminator Summary

Gurur:

LEAHA
FARAE
HEEA
lﬂll

HHH
"~

1L

L=\
EEE

After 25 epochs

EERO
HEAE
BEIZEIHA
719171 |

After 75 epochs

aj K, Sakya Basak, Rahul Bansal, Rajat

HERLE
HEAA
EIEER
]3] 7]

o

-~

After 50 epochs

HEHE
3]é]a]3
BEIEEIN
131 ~] 7]

After 100 epochs

VAE:introduction

© How it works

o VAEs are powerful generative models which is used to create
variations of input data in a desired format.Contrary to vanilla
autoencoders their latent space is continuous.

@ Given an input, we feed it to an encoder which generates a latent
space representation of the data.This latent space is usually of a
smaller dimension than original input.

@ The encoder outputs a probability distribution of the latent attributes
.The decoder then samples values from the distribution of the
attributes to generate outputs.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 7/23

VAE: Equations

@ Output x as seen from vae is generated from a latent variable z. We
try to approximate p(x|z) from q(x|z) and try to minimize the KL
Divergence.

@ Once we find q we try to optimize a loss function.
. 47 | i15(i,1) .
LB(97 ¢’X:) _ 2oiza(OgPi(X |z"-)) _ KL(q¢(Z|X')||p9(Z))
@ The first term consists of a reconstruction error and a second term

encourages learned distribution g(z|x) to be equal to p(z) which is
chosen as unit Gaussian.

@ To train the weights of the encoder and decoder networks we use
backpropagation, but since there is random sampling involved we use
a reparameterization trick.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 8 /23

Implementation and Results

@ Code implemeneted using tensorflow.

@ Encoder consists of 2 convolutional layers followed by a fc layer.

@ Decoder consists of a fc layer followed by 3 Convolutional transpose
layers.

@ Parameterization trick used to allow gradients to backpropagate
through sample to encoder network parameters.

@ Trained for 100 epochs. The latent dimension size has been kept at
16.

7
7
14
-}
6

[~}
5
4
§
¢
a
4
3
«

B J \;.[\q;~0u'=[\ -]

N K Wt

Figure: Generation Results

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 9 /23

Stacked GAN

© StackGAN is a Conditional GAN based model proposed to synthesize
high-quality images from text discriptions.

@ It decomposes the text-to-image generative process into two stages.

© Stage-l GAN is a Conditional GAN conditioned on the context vector
generated from text embedding. It sketches the primitive shape and
colors of the object based on the given text description, yielding
Stage-| low-resolution images.

@ Stage-ll GAN is also a Condtional GAN conditioned on Stage-l results
and text embedding. It generates high-resolution images with
photo-realistic details.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 10 / 23

Motivation for the approach

@ Can’t do in one stage because of multiple things going on beneath
the hood its too complicated .

@ Can't do multiple stages because training such a model is tough.

@ Incoherence in optimization :Multiple stages trained on different
objective functions,which may result in incoherence in optimization,
where each module is not trained to match other modules.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 11 /23

Text Embedding
Text embedding are extracted using deep convolutional and recurrent text
encoders that learn a correspondence function with images by optimizing
the following structural loss.

5 s A £ (V) + Alym, fi(tn)
where (vp, tn, yn) are image,text and class label of a data sample, A is 0-1
loss. f, and f; are parametrized as follows.

f,(v) = argmaxye, Err(,)[¢(v) T 0(t)]

(1) = argmaxye, Eymy) [6(v) T 0(2)]
where ¢ is the image encoder using CNN and ¢ is the text encoder using
LSTM.
Conditioning Augmentation
Conditioning Augmentation technique is proposed wherein the latent
variable ¢ is sampled from N (u(@¢), £(@¢)) where u and X which are
functions of embedding @(t) are jointly learnt along with rest of the
network.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 12 /23

Stage-1 GAN is a conditional GAN with conditioning variable & sampled
from N (1o(@¢), Lo(@¢)). Stage-l GAN trains the Generator Gy and
Discriminator Dy by alternatively maximizing £Lp, and minimizing Lg, :

Lp, = E(/o,t)diata[log Do(lo, @+¢)]+
E(z~pz,t~pdata)[log(1 - DO(G0(27 60)’ (pt))]

EGO = E(zrvpz,twpdata)[log(l - DO(GO(Z7 6O)a (Pt))]+
ADkr(N (po(@¢), Zo(@:))[INV(0, 1))

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 13 /23

Stage-I|

Stage-lIl GAN is also a conditional GAN which conditions on low-resolution
result so = Go(z, &) from Stage-| and latent variables &. Stage-lIl GAN
trains the Generator G and Discriminator D by alternatively maximizing
Lp and minimizing L¢ :

Lp = E(I,t)wpdata[log Do(/, (pt)]+E(so~pGO,t~pdata)[IOg(]-_D(G(Sva 6)a (Pt))]

Le= E(SONPGO,thdata)[/Og(l - D(G(507 6)? (Pt))] +
ADki (N (pu(@¢), Z(+)) [N (0, 1))

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 14 /23

Architecture

" conditioning | | Stage-l Generator G, | Ir T 7 stage-IDiscriminatorD, |
Augmentation (ca) | | for sketch | |
Text descriptiont Embedding i, ™ 1| | | |
& | L. |

This bird is grey with | |
white onits chestand > I — I | @ o
has a very short beak s [I | |
1| “ NI, | / |

a | 2TNO | o 1on and
| 64 xB64 | ‘ompression ant |
L___gNey L | \aimages) Spatatfieplcation_ _ 4
Embedding ¢,
C T 256 %256 T ;mn—pre_ssin_na;!_ o
| Conditioning Spatial Replication I
| Augmentation | |
______ |
128 |
64x 64 512 |
Stage-| results

{0, 1}l
|
4 |
256 x256 |
e |1 stagenDisciminatorn |

Gururaj K, Sakya Basak, Rahul Bansal, Rajat

Implementation Details

Upsampling
@ The up-sampling blocks consists of nearest neighbor upsampling
followed by 3x3 stride 1 convolution.

@ Batch Normalization and Relu are applied at every stride except last
one.

Residual Blocks
@ They have the same implementation as above.

@ Two residual blocks are used in 128x128 StackGAN Models while four
are used in 256x256 models.

Down Sampling

@ consists of 4x4 stride 2 convolutions,Batch Normalization and Leaky
RelLU.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 16 / 23

Training
@ We iteratively train the generator and discriminator for Stage 1 GAN
for 600 epochs by fixing stage 2.

@ We do the same for Stage 2 GAN for 600 epochs by fixing stage |
GAN.

@ All networks are trained using ADAM Solver with batch size 64 and
an initial learning of 0.00002.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 17 / 23

Ablation Experiments: Conditioning Augmentation

Conditioning Augmentation

@ It has been seen that StackGAN without CA produces blurred
unrealistic images as claimed in paper.

@ In CA, instead of single Gaussian we use mixture of 3 Gaussians to
produce samples ¢ from text embedding ¢(t)

@ The parameters of the Gaussians are learnt via reparameterization
trick using FC layers. The KL divergence regularization term for each
of these gaussians is added to loss function while training Generators.

@ Results seen : We do not notice any perceivable change maybe
because all the Gaussian parameters generated are almost identical.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 18 / 23

Conditioning mentation Results

This bird has wings that are black and has a white belly

"

W

Without CA With CA CA with gaussian mixture

Gururaj K, Sakya Basak, Rahul Bansal, Rajat

Ablation Experiments

Generator Upsampling Block

@ The original StackGAN model uses nearest neighbour upsampling
block with scale factor 2.But we notice the resulting images are
slightly pixelated.

@ In order to mitigate this problem we experiment with bilinear and
bicubic upsampling block.

@ Results seen : The images obtained are smoother.

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 20 /23

Bilinear Upsampling Results

g

A b SR

with nearest neighbour with bilinear upsampling
upsampling

Gururaj K, Sakya Basak, Rahul Bansal, Rajat [\ 21 /23

Scope of future Work

@ Use SRGAN as second stage
@ Use attention mechanisms in text input.

@ generate multimodal images

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 22 /23

Thank You

Gururaj K, Sakya Basak, Rahul Bansal, Rajat GANs 23 /23

	How it works

