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Graph notation and similarity graphs

Clustering problem can be reformulated as follows:

Problem

Find a partition of the graph such that the edges between different groups
have a very low weight (which means that points in different clusters are
dissimilar from each other) and the edges within a group have high weight
(which means that points within the same cluster are similar to each
other).
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Different similarity graphs

ε neighbourhood Graph

Connect all points whose pairwise distances are smaller than ε.

Unweighted

k-nearest neighbor graphs (knn)

Connect vertex vi with vertex vj if vj is amongst k nearest neighbours
of vi .

Use mutual k nearest neighbour method or k nearest neighbour.
to get undirected graph.

The fully connected graph:

Here we simply connect all points with positive similarity with each
other, and we weight all edges by sij .

Gaussian similarity function, s(xi , xj) = exp
(
||xi−xj ||2

2σ2

)
.
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Graph Laplacians

The main tools for spectral clustering are graph Laplacian matrices.

Unormalized graph laplacian, L = D −W .

Normalized graph laplacians:

Lsym = D−1/2LD−1/2

Lrw = D−1L
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Unnormalized spectral clustering

Input: Similarity matrix S ∈ Rnxn, number k of clusters to construct.

Construct a similarity graph by one of the ways mentioned previously.
Let W be its weighted adjacency matrix.

Compute the unnormalized Laplacian L.

Compute the first k eigenvectors u1, ..., uk of L.

Let U ∈ Rnxk be the matrix containing the vectors u1, ..., uk as
columns.

For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th
row of U.

Cluster the points (yi )i=1,...,n in Rk with the k-means algorithm into
clusters C1, ...,Ck .

Output: Clusters A1, ...,Ak with Ai = {yj ∈ Ci}.
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Normalized spectral clustering according to Shi and Malik
(2000)

Input: Similarity matrix S ∈ Rnxn, number k of clusters to construct.

Construct a similarity graph by one of the ways mentioned previously.
Let W be its weighted adjacency matrix.

Compute the normalized Laplacian Lrw .

Compute the first k generalized eigenvectors u1, ..., uk of the
generalized eigenproblem Lu = λDu.

Let U ∈ Rnxk be the matrix containing the vectors u1, ..., uk as
columns.

For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th
row of U.

Cluster the points (yi )i=1,...,n in Rk with the k-means algorithm into
clusters C1, ...,Ck .

Output: Clusters A1, ...,Ak with Ai = {yj ∈ Ci}.
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Normalized spectral clustering according to Ng, Jordan,
and Weiss (2002)

Input: Similarity matrix S ∈ Rnxn, number k of clusters to construct.

Construct a similarity graph by one of the ways mentioned previously.
Let W be its weighted adjacency matrix.

Compute the unnormalized Laplacian L.

Compute the first k eigenvectors u1, ..., uk of Lsym.

Let U ∈ Rnxk be matrix containing the vectors u1, ..., uk as columns.

Form the matrix T ∈ Rnxk from U by normalizing the rows to norm 1.

For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th
row of T.

Cluster the points (yi )i=1,...,n in Rk with the k-means algorithm into
clusters C1, ...,Ck .

Output: Clusters A1, ...,Ak with Ai = {yj ∈ Ci}.
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Cut, RatioCut and Ncut

for a partition A,B of V, define

cut(A,B) =
∑

i∈A,j∈B
wij

We mention here three objective functions, minimizing which broadly
result in clusters having minimized intercluster distance.

cut(A1,A2, . . . ,Ak) =
∑k

i=1 cut(Ai , Āi )

RatioCut(A1, ...,Ak) =
∑k

i=1
cut(Ai ,Āi )
|Ai | (Explains unnormalised

spectral clustering).

Ncut(A1, ...,Ak) =
∑k

i=1
cut(Ai ,Āi )
vol(Ai )

(Explains normalized spectral

clustering).
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Other point of views

Spectral clustering (Ncut) can be explained using random walk on
graphs (P = D−1W =⇒ Lrw = I − P).

Perturbation theory also gives a beautiful explanation.
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Figure 1 from paper

Tapesh Yadav (Indian Institute of Science) Spectral Clustering
Final Presentation E0 270: Machine Learning Instructor: Ambedkar Dukkipati 11

/ 36



Reproducing Figure 1 with 196 data points

Figure: normalized, knn
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Reproducing Figure 1 with 196 data points

Figure: unnormalized, knn
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Reproducing Figure 1 with 196 data points

Figure: normalized, full graph
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Reproducing Figure 1 with 196 data points

Figure: unnormalized, full graph
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Figure 2 from paper
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Reproducing Figure 2

Figure: Cockroach graph
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Reproducing Figure 2

Figure: kmeans clustering
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Reproducing Figure 2

Figure: sign based clustering
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Figure 3 from Paper
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Reproducing Figure 3
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Figure 4 from Paper
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Reproducing Figure 4
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Figure 5 from Paper
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Reproducing Figure 5
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Using different metrics for kmeans

Figure: squared norm metric

Figure: cityblock metric
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Higher Eigenvectors of Laplacian

Figure: Higher Eigenvectors (5th and 6th) for unnormalized knn
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8 clusters: normalized, full graph

Figure: Data histogram and first 4 eigenvectors
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8 clusters: normalized, full graph

Figure: Clusters and last four eigenvectors
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High variance input data

Figure: Data histogram and first 4 eigenvectors
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High variance input data

Figure: Clusters and last two eigenvectors
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Dirac delta like behaviour of bigger eigenvectors for full
graph, unnormalised clustering

Figure: Data histogram and first 4 eigenvectors
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Dirac delta like behaviour of bigger eigenvectors for full
graph, unnormalised clustering

Figure: Clusters and last two eigenvectors
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Clustering on spiral dataset

Figure: Clustering using unnormalized, mutual knn
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Clustering on spiral dataset

Figure: Clustering using unnormalized, epsilon neighbour
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