Spectral Clustering

Tapesh Yadav

Final Presentation **E0 270: Machine Learning** Instructor: Ambedkar Dukkipati

Outline

- 1 similarity graphs and Clustering
- ② Graph Laplacians
- Spectral Clustering Algorithms
- 4 Various Interpretations
- **5** Reproducing Results
- 6 Experiments
 - 7 Clustering on spiral dataset

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

• Clustering problem can be reformulated as follows:

Problem

Find a partition of the graph such that the edges between different groups have a very low weight (which means that points in different clusters are dissimilar from each other) and the edges within a group have high weight (which means that points within the same cluster are similar to each other).

Different similarity graphs

ϵ neighbourhood Graph

- Connect all points whose pairwise distances are smaller than ϵ .
- Unweighted

k-nearest neighbor graphs (knn)

- Connect vertex v_i with vertex v_j if v_j is amongst k nearest neighbours of v_i.
- Use **mutual k nearest neighbour** method or **k nearest neighbour**. to get undirected graph.

The fully connected graph:

 Here we simply connect all points with positive similarity with each other, and we weight all edges by s_{ij}.

• Gaussian similarity function, $s(x_i, x_j) = exp\left(\frac{||x_i - x_j||^2}{2\sigma^2}\right)$.

- The main tools for spectral clustering are graph Laplacian matrices.
- Unormalized graph laplacian, L = D W.
- Normalized graph laplacians:

$$L_{sym} = D^{-1/2} L D^{-1/2}$$
$$L_{rw} = D^{-1} L$$

イロト 不聞 とくほと 不良とう 夏

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- Construct a similarity graph by one of the ways mentioned previously. Let W be its weighted adjacency matrix.
- Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors $u_1, ..., u_k$ of L.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_1, ..., u_k$ as columns.
- For i = 1, ..., n, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the i-th row of U.
- Cluster the points (y_i)_{i=1,...,n} in ℝ^k with the k-means algorithm into clusters C₁, ..., C_k.

Output: Clusters $A_1, ..., A_k$ with $A_i = \{y_j \in C_i\}$.

<ロト <問ト <注ト <注ト 三 三

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- Construct a similarity graph by one of the ways mentioned previously. Let W be its weighted adjacency matrix.
- Compute the normalized Laplacian L_{rw}.
- Compute the first k generalized eigenvectors $u_1, ..., u_k$ of the generalized eigenproblem $Lu = \lambda Du$.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_1, ..., u_k$ as columns.
- For i = 1, ..., n, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the i-th row of U.
- Cluster the points (y_i)_{i=1,...,n} in ℝ^k with the k-means algorithm into clusters C₁, ..., C_k.

Output: Clusters $A_1, ..., A_k$ with $A_i = \{y_j \in C_i\}$.

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- Construct a similarity graph by one of the ways mentioned previously. Let W be its weighted adjacency matrix.
- Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors $u_1, ..., u_k$ of L_{sym} .
- Let $U \in \mathbb{R}^{n \times k}$ be matrix containing the vectors $u_1, ..., u_k$ as columns.
- Form the matrix $T \in \mathbb{R}^{n \times k}$ from U by normalizing the rows to norm 1.
- For i = 1, ..., n, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the i-th row of T.
- Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters $C_1, ..., C_k$.

Output: Clusters $A_1, ..., A_k$ with $A_i = \{y_j \in C_i\}$.

for a partition A,B of V, define

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

We mention here three objective functions, minimizing which broadly result in clusters having minimized intercluster distance.

- $cut(A_1, A_2, ..., A_k) = \sum_{i=1}^k cut(A_i, \bar{A}_i)$
- $RatioCut(A_1, ..., A_k) = \sum_{i=1}^k \frac{cut(A_i, \overline{A}_i)}{|A_i|}$ (Explains unnormalised spectral clustering).
- Ncut(A₁,...,A_k) = ∑^k_{i=1} cut(A_i,Ā_i)/vol(A_i) (Explains normalized spectral clustering).

▲ロト ▲圖ト ▲画ト ▲画ト 三面 - 釣Aの

- Spectral clustering (Ncut) can be explained using random walk on graphs ($P = D^{-1}W \implies L_{rw} = I P$).
- Perturbation theory also gives a beautiful explanation.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圓 - 釣�?

Figure 1 from paper

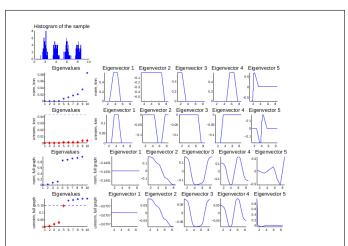
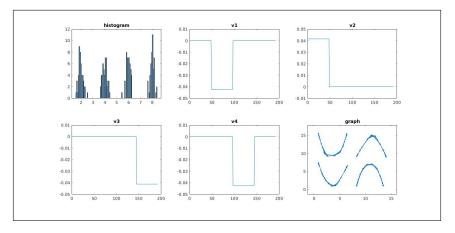


Figure 1: Toy example for spectral clustering where the data points have been drawn from a mixture of four Gaussians on R. Left upper corner: histogram of the data. First and second row: eigenvalues and eigenvectors of L_{res} and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of L_{res} and L based on the fully connected graph. For all plots, we used the Gaussian kernel with $\sigma = 1$ as similarity function. See text for more details.

3

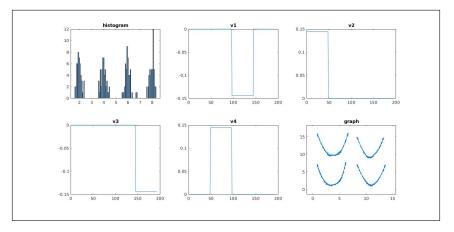
イロト イポト イヨト イヨト

Figure: normalized, knn



イロト イ団ト イヨト イヨト

Figure: unnormalized, knn



(日) (同) (三) (三)

Figure: normalized, full graph

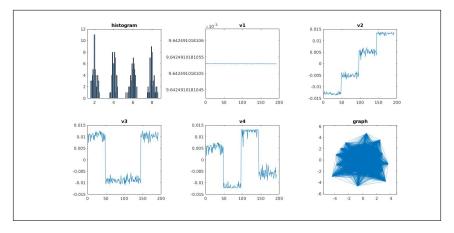
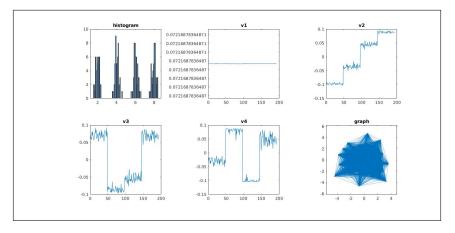
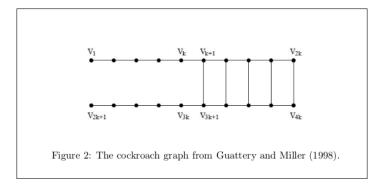


Figure: unnormalized, full graph



(日) (同) (三) (三)

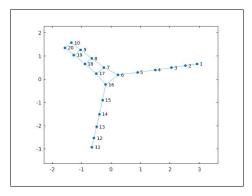
Figure 2 from paper



3

<ロ> (日) (日) (日) (日) (日)

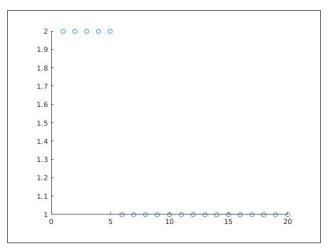
Figure: Cockroach graph



- 4 緑 ト - 4 戸 ト - 4 戸 ト

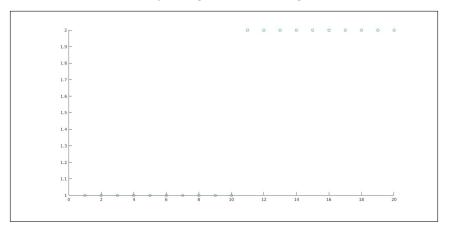
Reproducing Figure 2

Figure: kmeans clustering



- 4 同 6 4 日 6 4 日 6

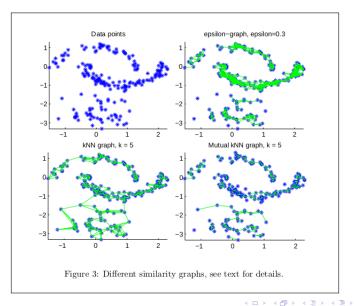
Figure: sign based clustering



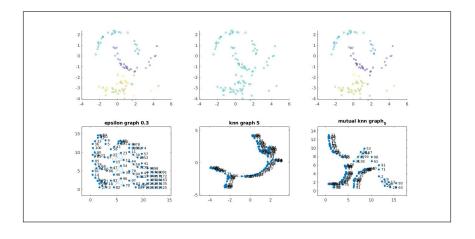
æ

(日) (周) (三) (三)

Figure 3 from Paper

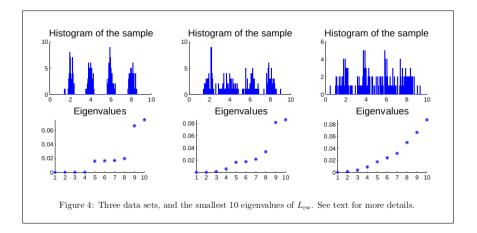


Reproducing Figure 3



イロト 不得下 イヨト イヨト

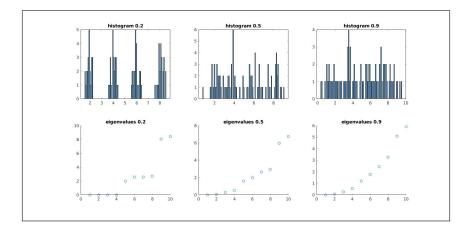
Figure 4 from Paper



3

- < A > < B > < B >

Reproducing Figure 4



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● 三日

Figure 5 from Paper

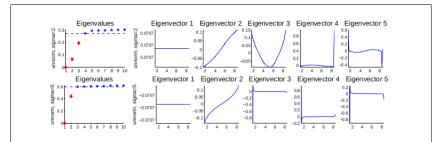
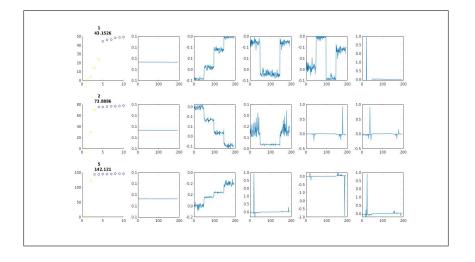


Figure 5: Consistency of unnormalized spectral clustering. Plotted are eigenvalues and eigenvectors of L, for parameter $\sigma = 2$ (first row) and $\sigma = 5$ (second row). The dashed line indicates min d_j , the eigenvalues below min d_j are plotted as red diamonds, the eigenvalues above min d_j are plotted as blue stars. See text for more details.

- 一司

3 🕨 🖌 🖻

Reproducing Figure 5

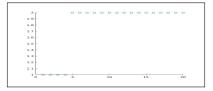


- 本間 と 本語 と 本語 と

Using different metrics for kmeans

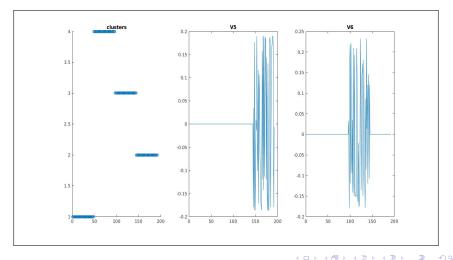
Figure: squared norm metric

Figure: cityblock metric



イロト イヨト イヨト イヨト

Figure: Higher Eigenvectors (5th and 6th) for unnormalized knn



8 clusters: normalized, full graph

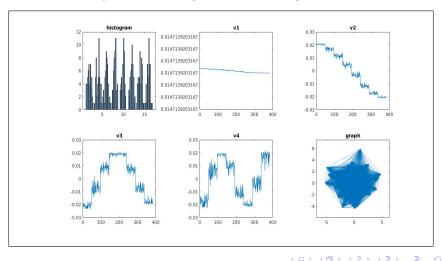
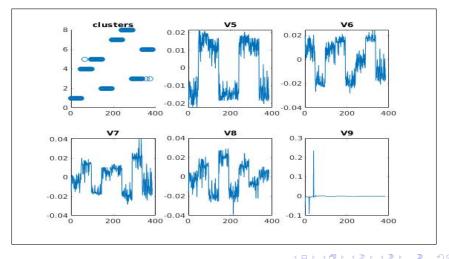


Figure: Data histogram and first 4 eigenvectors

Tapesh Yadav (Indian Institute of Science)

< A

8 clusters: normalized, full graph



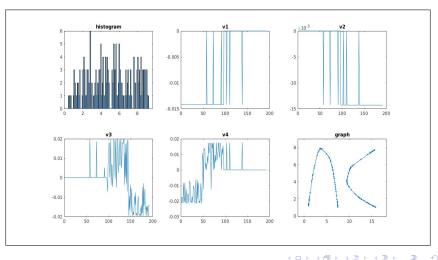
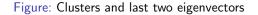
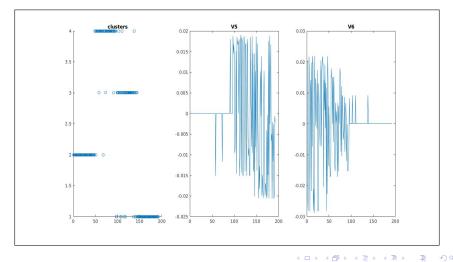


Figure: Data histogram and first 4 eigenvectors

Tapesh Yadav (Indian Institute of Science)

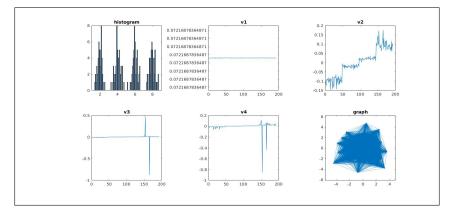
< 67 ▶





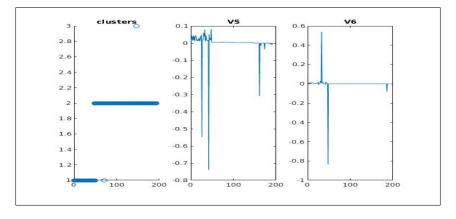
Dirac delta like behaviour of bigger eigenvectors for full graph, unnormalised clustering

Figure: Data histogram and first 4 eigenvectors



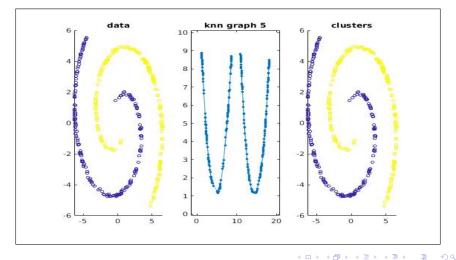
Dirac delta like behaviour of bigger eigenvectors for full graph, unnormalised clustering

Figure: Clusters and last two eigenvectors



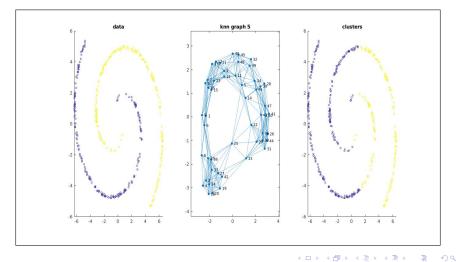
Clustering on spiral dataset

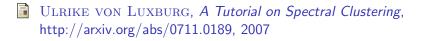
Figure: Clustering using unnormalized, mutual knn



Clustering on spiral dataset

Figure: Clustering using unnormalized, epsilon neighbour





イロト 不聞 とくほと 不良とう 夏