
Machine Learning by ambedkar@IISc

I Support Vector Machines

I Kernel Methods

Agenda

Stochastic Gradient Descent and Perceptron

Support Vector Machines

Recall SVMs

Kernel Methods

2

What if the data is not linearly separable?

Yes! In practice, most often the data is not linearly separable.
Then

I Make linearly separable using kernel methods.

I (Or) Use multilayer perceptron.

What are all these?

I The first leads to Support Vector Machines, that rules
machine learning for decades

I The second one leads to Deep Learning!

3

Stochastic Gradient Descent and
Perceptron

Recall Gradient Decent for Logistic Regression

Given data {xn, yn}Nn=1,

I We have the following two class classification problem

P (yn = 1|xn, w) = µn

P (yn = 0|xn, w) = 1− µn

where µn is defined using logistic function as

µn = f(xn) = σ(wTxn) =
exp(wTxn)

1 + exp(wTxn)

4

Recall Gradient Decent for Logistic Regression

I The loss function that we have incorporated in this problem
is cross entropy loss defined as

L(w) = −
N∑
n=1

[
ynw

Txn − log(1 + exp(wTxn))
]

I Gradient Decent:

w(t+1) = w(t) − η
N∑
n=1

(µ(t)n − yn)xn︸ ︷︷ ︸
Gradient at the previous value

where µ(t)n = 1

1+exp
(
−w(t)T xn

)

5

Stochastic Gradient Decent for Logistic Regression

I Gradient decent requires all the data to calculate the
gradient at each iteration

I A heuristic that we can apply is the following: approximate
the gradient using randomly chosen (xn, yn) i.e.

w(t+1) = w(t) − η(t)
(
µ(t)n − yn

)
xn

I Also replace predicted label probability µ(t)n by predicted
binary label ŷ(t)n , where

ŷ(t)n =

1 if µ(t)n ≥ 0.5 or w(t)T xn ≥ 0

0 if µ(t)n < 0.5 or w(t)T xn < 0

6

Stochastic Gradient Decent for Logistic Regression
(cont. . .)

I Then the update rule becomes

w(t+1) = w(t) − η(t)(y(t)n − yn)xn

w(t) gets updated only when there is a misclassification i.e.
ŷ
(t)
n 6= yn

This is mistake driven update rule.

I Assume that class labels are +1,−1

=⇒ ŷ(t)n − yn =

−2yn if ŷ(t)n 6= y
(t)
n

0 if ŷ(t)n = y
(t)
n

7

Mistake driven learning (contd. . .)

I Whenever there is a misclassification update the weights
with the following update rule

w(t+1) = w(t) + 2η(t)ynxn

Perceptron learning algorithm is a hyperplane based
learning algorithm.

8

Hyperplanes

I Separates a d-dimensional
space into two half spaces
(positive and negative).

I w ∈ Rd is a normal vec-
tor pointing towards positive
half.

I Equation of the hyperplane is wTx = 0

I If hyperplane does not pass through origin, we add bias
b ∈ R

wTx+ b = 0

b > 0 : moving it parallely along w

b < 0 : opposite direction
9

Hyperplane based Classifiers

Classification rule

y = sign(wTx+ b)

i.e.

wTx+ b > 0 =⇒ y = +1

wTx+ b < 0 =⇒ y = −1

10

The Perceptron Algorithm

I Aim is to learn a linear hyperplane to separate two classes.

I Mistake drives online learning.

I Guaranteed to find a separating hyperplane if data is
linearly separable.

I If data is not linearly separable

I Make it linearly separable using kernel methods.

I (or) Use multilayer perceptron.

11

What is the best hyperplane for a classification task

I Suppose we have several choices of classifiers, which is the
most promising one?

I promising. . . from the point view of learning

I learning. . .means that has a better generalizing capacity

I Support vector machine provides an answer to this

12

Distance from a point to a line

I Consider a two dimensional case

I For a, b, c ∈ R, ax+ by + c = 0 defines a line in two
dimensional plane.

I Let (x0, y0) be any point then

Distance(ax+ by + c = 0, (x0, y0)) =
|ax0 + by0 + c|√

a2 + b2

13

Margins

I Let wTx+ b = 0 be a hyperplane in Rd.
I Geometric margin is a distance

rn = rn(w
Tx+ b = 0, xn) =

|wTx+ b|
‖w‖

Since margin is completely determined by w, we write

rn = rn(w, xn) =
|wTx+ b|
‖w‖

I Given a set of points x1, x2, . . . , xN , margin w.r.t. w is

r = min
1≤n≤N

|rn| = min
1≤n≤N

|wTx+ b|
‖w‖

14

Margins (contd. . .)

I Functional margin of w on a training sample (xn, yn) is
defined as

f(w, (xn, yn)) = yn(w
Tx+ b)

=

positive if w predicts yn correctly

negative if w predicts yn incorrectly

15

Loss Function for Hyperplane based Classifiers

I The loss function for hyperplane based classifiers

L(w, b) =
N∑
n=1

ln(w, b)

=

N∑
n=1

max{0,−yn(wTxn + b)}

I If yn(wTxn + b) > 0 then w, b predicts yn correctly hence
ln(w, b) = 0

I If yn(wTxn + b) < 0 then w, b predicts yn correctly hence
ln(w, b) = 0

16

Stochastic Gradients

I We are going to calculate gradients for ln not L. (Hence
stochastic)

∂ln(w, b)

∂w
=

−ynxn when w, b make a mistake

0 otherwise

∂ln(w, b)

∂w
=

−yn when w, b make a mistake

0 otherwise

I For every mistake, update rule is

w = w + ynxn

b = b+ yn

(Assuming the learning rate is 1.)

17

Perceptron Algorithm

Given training data : D = {(x1, y1), . . . , (xn, yn)}
Initialize wold = {0, . . . , 0}, bold = 0

Repeat until convergence

I For a random (xn, yn) ∈ D

I If yn(wTxn + b) ≤ 0 (or sign(wTxn + b) 6= yn, i.e. mistake
mode)

wnew = wold + ynxn

bnew = bold + yn

18

Perceptron Algorithm : In Working

Case 1: Misclassified positive example (yn = +1)

I That is we are in a mistake mode and the perceptron
wrongly predicts that

wToldxn + bold < 0

=⇒ yn(w
T
oldxn + bold) < 0

I Update

wnew = wold + ynxn = wold + xn (since yn = +1)

bnew = bold + yn = bold + 1

I Then

wTnewxn + bnew = (wold + xn)
Txn + bold + 1

= (wToldxn + bold) + xTnxn + 1 19

Perceptron Algorithm : In Working (contd. . .)

Case 1 (contd. . .) : Misclassified positive example (yn = +1)
=⇒ wTnewxn + bnew is less negative than wToldxn + bold

=⇒ Hence, hyperplane gets adjusted in a right direction.

20

Perceptron Algorithm : In Working (contd. . .)

Case 2: Misclassified negative example (yn = −1)
I Again we are in a mistake mode and perceptron wrongly

predicts that

wToldxn + bold > 0

i.e.yn(w
T
oldxn + bold < 0

I Update

wnew = wold + ynxn = wold− xn (since yn = −1)
bnew = bold + yn = bold − 1

I Then

wTnewxn + bnew = (wold − xn)Txn + bold − 1

= (woldxn + bold)− (xTnxn + 1)

21

Perceptron Algorithm : In Working (contd. . .)

Case 2 (contd. . .) : Misclassified negative example (yn = −1)
=⇒ wTnewxn + bnew is less positive than wToldxn + bold

=⇒ Hence, hyperplane gets adjusted in a right direction.

22

Perceptron Convergence Theorem: (Block & Novikoff)

If the training data is linearly separable with margin r by a unit
norm hyperplane w∗(||w∗|| = 1) with b = 0, then perceptron
converges after R2

r2
mistakes during the training.

23

Some Final Remarks

I If exists, perceptron finds one of many hyperplanes.

I Of many choices which is the best? : Hyperplane having
maximum margin?

I Large margin leads to good generalization on the data.

24

Support Vector Machines

A bit of history1

I Pre 1980
I Almost all learning methods learned linear decision surfaces
I Linear learning methods have nice theoretical properties

I 1980’s

I Decision trees and Neural Networks allowed efficient
learning of non linear decision surfaces

I Little theoretical basis and all suffer from local minima

I 1990’s
I Efficient learning algorithms for nonlinear functions based

on computational learning theory
I Nice theoretical properties

1Slide credit R. Berwick

25

Introduction (cont. . .)

I SVM is a hyperplane based classifier

I That means that our model is linear

I Later we see how cleverly we can bring in nonlinearity

I Prediction rule y = sign(wTx+ b)

I Aim: Given training data {(x1, y1), . . . (xn, yn)}, build a
“good” classifier

I Trick: Learn w and b such that achieves maximum margin

26

Introduction

The points in the red circles are
called support vectors.

27

Objective

I Let us consider two class classification problem with class
labels +1 and −1

I We have the following perceptron objective

wTxn + b ≥ 0 =⇒ yn = +1

wTxn + b ≤ 0 =⇒ yn = −1

I We slightly modify our objective

wTxn + b ≥ 1 =⇒ yn = +1

wTxn + b ≤ −1 =⇒ yn = −1

28

Objective (cont. . .)

One can see that

wTxn + b ≥ 1 =⇒ yn = +1

wTxn + b ≤ −1 =⇒ yn = −1

⇓

yn(w
Txn + b) ≥ 1

⇒ min
1≤n≤N

|wTxn + b| = 1

29

Margin

I Given a set of points x1, x2, . . . , xN , margin w.r.t. w is

γ(w, b) = min
1≤n≤N

|rn| = min
1≤n≤N

|wTx+ b|
‖w‖

I Now since we have

min
1≤n≤N

|wTxn + b| = 1

I We get

γ(w, b) = min
1≤n≤N

|wTxn + b|
||w||

=
1

||w||

30

Optimization Problem

Maximizing the margin

γ(w, b) =
1

||w||

⇓
Minimizing ||w||

Optimization Problems:

minimize f(w, b) =
||w||2

2

subject to yn(wTxn + b) ≥ 1

which is a quadratic program with N linearity constraints.

31

Optimization Problem (cont. . .)

Data: {(x1, y1), . . . (xN , yN)}

Modal: wTx+ b = 0

Parameters: w a d-dimensional vector and b a number

Optimization Problem:

minimize f(w, b) =
||w||2

2

subject to yn(wTxn + b) ≥ 1

which is a quadratic program with N linearity constraints.

32

Why a large margin implies good generalization?

I In SVM we have γ ∝ 1
||w||

I Large margin ⇒ small ||w|| i.e small l2 norm.

I Small ||w|| ⇒ regularized solution i.e wi does not become
weighing.

I Generalizes very well on the test data.

33

Hard SVM

Assumption: Every training example need to fulfill the margin
condition i.e yn(wTxn + b) ≥ 1

Objective:

min
w,b

f(w, b) =
||w||2

2

subject to yn(wTxn + b) ≥ 1, n = 1, 2, . . . N

34

Soft Margin

Allow some training examples
I fall within the margin
I misclassified (i.e fall on the wrong side)

ζ : slack : Distance by which
it violates the margin

Case 1 : ζn < 1 : xn violates the margin but on the right side.
Case 2: ζn > 0 : xn not only violates the margin but totally on
the wrong side.

35

Soft SVM (contd . . .)

In the case data satisfies

yn(w
Txn + b) ≥ 1− ζn, ζn > 0

Goal: Not only maximize margins but also minimize the sum of
slacks.
Objective: The principle objective is

min
w,b,ζ

f(w, b, ζ) =
||w||2

2
+ c

N∑
n=1

ζn

subject to yn(wTxn + b) ≥ 1− ζn, ζn ≥ 0

This is also convex objective function which is a quadratic
program (QP) with 2N inequality constraints.

36

Diversion: Solving constrained optimization problems

Constrained Optimization Problem: Consider

min
w
f(w)

such that gn(w) ≤ 0, n = 1, 2, . . . , N

hm(w) = 0, m = 1, 2, . . . ,M

I Constrained optimization problems are difficult to solve
I So we will introduce non-negative lagrange multipliers

α = {αn}Nn=1and β = {βn}Mn=1

one for each constraints
I Lagrangian:

L (w,α, β) = f(w) +
∑N

n=1 αngn(x) +
∑M

m=1 βmhm(x)

37

Diversion: Solving constrained optimization problem
(contd. . .

Let Lp(w) = maxα,β L (w,α, β)

I Lp(w) =∞ if w violates any of the constraints
I Lp(w) = f(w) if w satisfies all the constraints

⇒ min
w

Lp(w) = min
w

max
α,β

L (w,α, β)

Further if f, g, h are convex then

min
w

max
α,β

L (w,α, β) = max
α,β

min
w

L (w,α, β)

KKT Condition: At optimal solution

αngn(w) = 0 and βmhm(w) = 0

38

Solving hard margin SVM

I We have the following hard margin SVM

min
w,b

f(w, b) =
||w||2

2

subject to 1− yn(wTxn + b) ≤ 0, n = 1, 2, . . . , N

I Lagrangian can be written as

min
w,b

max
α≥0

L (w, b, α)

=
||w||2

2
+

N∑
n=1

αn(1− yn(wTxn + b))

I We can solve this by solving the dual problem (Eliminate w
and b and solve for dual variables)

39

Solving hard margin SVM (contd. . .)

I Derivative of lagragian w.r.t w

δL

δw
= w −

N∑
n=1

αnynxn = 0

⇒ w =

N∑
n=1

αnynxn

I Derivative of lagragian w.r.t b

δL

δb
=

N∑
n=1

αnyn = 0

I Now we substitute w =
∑N

n=1 αnynxn in lagragian and also
we use

∑N
n=1 αnyn = 0

40

Solving hard margin SVM (contd. . .)

max
α≥0

LD(α) =
1

2
(

N∑
n=1

αnynxn)
T (

N∑
n=1

αnynxn)

+

N∑
n=1

αn[1− yn(
N∑
m=1

αmymxm)
Txn + byn]

=
1

2
(

N∑
n=1

αnynx
T
n)(

N∑
m=1

αmymxm)

+

N∑
n=1

αn −
N∑
n=1

αnyn(

N∑
m=1

αmymx
T
m)xn

+b

N∑
n=1

αnyn

41

Solving hard margin SVM (contd. . .)

max
α≥0

LD(α) =
1

2

N∑
n=1

N∑
m=1

αnαmynymx
T
nxm +

N∑
n=1

αn

−
N∑
n=1

N∑
m=1

αnαmynymx
T
nxm

=

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynymx
T
nxm

such that
N∑
n=1

αnyn = 0

42

Let Gmn = ymynx
T
mxn a n× n matrix

Then the optimization problem is :

max
α≥0

LD(α) = αT 1− 1

2
αTGα s.t

N∑
n=1

αnyn = 0

43

Solving hard margin SVM (contd. . .)

I We have a maximization of a concave function. (because
Hessian of G is p.s.d)

I Note that the original primal SVM objective is also convex

I The input x appear as inner product have one can apply
something called "kernel trick".

I On solving dual optimization problem We can treat the
objective on a quadratic program and by running QP solver
like quadprog, CPLE etc.

44

Solving hard margin SVM (contd. . .)

I once we solve for αn, w and b can be computed :

w =

N∑
n=1

αnynxn

b = −1

2
(min
x:yn=±1

wTxn + max
x:yn=−1

wTxn)

I most αn′s will be zero.

I αn 6= 0 only if xn lies on one of the two margin boundaries

i.e yn(wTxn + b) = 1

I These one called support vectors.

45

Solving soft margin SVM

I Optimization problems:

min
w,b,ζ

f(w, b, ζ) =
||w||2

2
+ c

N∑
n=1

ζn

subject to 1 ≤ yn(wTxn + b) + ζn, ζn ≥ 0

n = 1, 2, . . . , N

I By introducing lagrange multiplier

min
w,b,ζ

max
α≥0,β≥0

L (w, b, ζ, α, β)

=
||w||2

2
+c

N∑
n=1

ζn+

N∑
n=1

αn(1−yn(wTxn+b)−ζn)−
N∑
n=1

βnζn

46

Solving soft margin SVM (contd. . .)

I Next step is to eliminate the primal variables w, b, ζ to get
dual problem containing dual variable

δL

δw
= 0⇒ w =

N∑
n=1

αnynxn

δL

δb
= 0⇒

N∑
n=1

αnyn = 0

δL

δζn
= 0⇒ c− αn − βn = 0

47

Solving soft margin SVM (contd . . .)

I This gives

max
α≤C,β≥0

LD(α, β) =

N∑
n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(x
T
mxn)

such that
N∑
n=1

αnyn = 0

(Note dual variable β does not appear)

⇒ max
α≤C

LD(α) = αT 1− 1

2
αTGα s.t

N∑
n=1

αnyn = 0

where Gmn = ymynx
T
mxn a NxN matrix

I Note:
I α′s are again sparse
I Nonzero αn

′s corresponds to the support vector. 48

The Nature of support vectors

I Hard Margin SVM : It has only one type of support vectors.
- Lying on the margin boundaries

wTx+ b = −1and wTx+ b = +1

I Soft Margin SVM : Three types of support vectors

I Lying on the margin boundaries

wTx+ b = −1 and wTx+ b = +1(ζ = 0)

I Lying within the margin region (0 < ζn < 1) but still on the
correct side.

I Lying on the wrong side of the hyperplane (ζn ≥ 1)

49

The nature of support types

The nature of support types
50

SVM via Dual Formulation

Hard Margin SVM

max
α≥0

LD(α) = αT 1− 1

2
αTGα s.t

N∑
n=1

αnyn = 0

Soft margin SVM

max
α≤C

LD(α) = αT 1− 1

2
αTGα s.t

N∑
n=1

αnyn = 0

Advantages of Dual Formulation:

I The dual problem has only one constraint that is non
trivial (

∑N
n=1 αnyn = 0)

The original primal formulation of SVM has many more
(N- number of training examples)

I Allow non linear separator by replacing the linear product
by kernalized similarities.

51

SVM via Dual Formulation

Drawbacks of Dual Formulation

I Dual formulation can be expensive if N (The size of the
data) is very large ⇒ Have to solve for N variables
α = [α1, . . . , αN]

I Need to store an N ×N matrix G

52

Loss functions in hyperplane based classifier

I Perceptron Loss: l(w, b) =
∑N

n=1 ln(w, b)

=

N∑
n=1

max{0,−yn(wTxn + b)}

I SVM Loss: For each training sample we need

yn(w
Txn + b) ≥ 1− ζn

Loss = Sum of slacks

=

N∑
n=1

ln(w, b)

=

N∑
n=1

ζn

=
N∑
n=1

max{0, 1− yn(wTxn + b)}
53

Loss Functions in hyperplane based classifier

Loss functions
54

Recall SVMs

Objective

I Let us consider two class classification problem with class
labels +1 and −1

I We have the following perceptron objective

wTxn + b ≥ 0 =⇒ yn = +1

wTxn + b ≤ 0 =⇒ yn = −1

I We slightly modify our objective

wTxn + b ≥ 1 =⇒ yn = +1

wTxn + b ≤ −1 =⇒ yn = −1

55

Optimization Problem (cont. . .)

Data: {(x1, y1), . . . (xN , yN)}

Modal: wTx+ b = 0

Parameters: w a d-dimensional vector and b a number

Optimization Problem:

minimize f(w, b) =
||w||2

2

subject to yn(wTxn + b) ≥ 1

which is a quadratic program with N linearity constraints.

56

Soft Margin

Allow some training examples
I fall within the margin
I misclassified (i.e fall on the wrong side)

ζ : slack : Distance by which
it violates the margin

Case 1 : ζn < 1 : xn violates the margin but on the right side.
Case 2: ζn > 0 : xn not only violates the margin but totally on
the wrong side.

57

Soft SVM (contd . . .)

In the case data satisfies

yn(w
Txn + b) ≥ 1− ζn, ζn > 0

Goal: Not only maximize margins but also minimize the sum of
slacks.
Objective: The principle objective is

min
w,b,ζ

f(w, b, ζ) =
||w||2

2
+ c

N∑
n=1

ζn

subject to yn(wTxn + b) ≥ 1− ζn, ζn ≥ 0

This is also convex objective function which is a quadratic
program (QP) with 2N inequality constraints.

58

Solving soft margin SVM (contd . . .)

I This gives

max
α≤C,β≥0

LD(α, β) =

N∑
n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(x
T
mxn)

such that
N∑
n=1

αnyn = 0

(Note dual variable β does not appear)

⇒ max
α≤C

LD(α) = αT 1− 1

2
αTGα s.t

N∑
n=1

αnyn = 0

where Gmn = ymynx
T
mxn a NxN matrix

I Note:
I α′s are again sparse
I Nonzero αn

′s corresponds to the support vector. 59

Kernel Methods

The notion of Similarity and Distance

I Consider a d dimensional real space Rd

I Consider two points x = (x1, . . . , xd) and y = (y1, . . . , yd)

I When do we say the point x is similar to point y or how do
we measure the similarity between x and y

I What is the distance between x and y

Linear models depend on "linear" notion of similarity and
distance

similarity(xn, xm) = xTnxm

Distance(xn, xm) = (xn − xm)T (xn − xm)

60

Going from one space to another

Use feature mapping function φ to map data to new space
(usually high dimensional) where the original learning problem
becomes easy i.e

φ : X→ F

X : space that the original data lies

F : some high dimensional space

61

Feature Mappings

Consider the following mapping

φ : R2 → R3

(x1, x2)→ (x21,
√
2x1x2, x

2
2) = (z1, z2, z3)

feature mappings 62

Cover’s Theorem on the Seperability of Patterns

By Thomas Cover, 1965

A complex pattern-classification problem, cast in a
high-dimensional space nonlinearly, is more likely to be linearly
seperable than in a low-dimensional space, provided that the
space is not densely populated

I This motivates use of nonlinear kernels in various machine
learning methods.

I Kernel methods dominated ML for many years.

Thomas Cover was an information theoretist

63

What could be the problem with the mappings?

I Constructing these mappings can be expensive, specially
when the new space is high dimension.

I Storing and using the mappings in later computation can
be way expensive.

I Kernels side-step these issues by defining on "implicit"
feature map.

64

Kernel : Example

Consider x = (x1, x2) ∈ R2 , z = (z1, z2) ∈ R2

Define a function

K : R2 × R2 → R

K(x, z) = (xT z)2

= (x1z1 + x2z2)
2

= x21z
2
1 + x22z

2
2 + 2x1x2z1z2

= (x21,
√
2x1x2, x

2
2)(z

2
1 ,
√
2z1z2, z

2
2)

= φ(x)Tφ(z)

65

Kernel : Example (contd. . .)

We have

K : R2 × R2 → R

K(x, z) = (xT z)2

= φ(x)Tφ(z)

K implicitly defines a mappings φ to a higher dimensional space
φ(x) = (x21,

√
2x1x2, x

2
2) and computes inner product based

similarity φ(x)Tφ(x) in that space

66

Kernels : Examples (contd . . .)

I We did not need to predefine/compute the mapping φ to
compute K(x, z)

I The function K is known as the kernel function

I Evaluating K is almost as fast as computing inner product.

I Any kernel function K implicitly defines an associated
feature mapping φ

67

Kernel : Definition

Feature mapping:

φ : X → F

Kernel function:

K : X × X → R

(x, z)→ φ(x)Tφ(z)

Note: Not every K with K(x, z) = φ(x)Tφ(z), for some φ is
not a kernel. K needs to satisfy Mercer’s condition

68

Mercer Condition

I K is symmetric and positive semidefinite
⇓

K must define a dot product for some higher space F

I The function K is p.s.d if∫ ∫
f(x)K(x, z)f(z)dxdz ≥ 0

for every function f that is square integral i.e∫
f(x)dx <∞

69

Algebraic operations on Kernels

K(x, z) = K1(x, z) +K2(x, z)

K(x, z) = αK1(x, z)

K(x, z) = K1(x, z)K2(x, z)

70

Examples of Kernels

I Linear kernel : K(x, z) = xT z

I Quadratic kernel : K(x, z) = (xT z)2 or (1 + xT z)2

I Polynomial kernel : K(x, z) = (xT z)d or (1 + xT z)d

I Radial basis function(RBF) : K(x, z) = exp(−r||x− z||2)

71

Kernel Matrix

Given the data {x1, x2, . . . , xN}, where xn ∈ X , n = 1, 2, . . . N ,
kernel K is a function

K : X × X → R

K(xi, xj) 7→ φ(xi)
Tφ(xj)

that defines a N ×N matrix K as

Kij = K(xi, xj)

which gives similarity between ith and jth example in the
feature space F .

72

Important Properties of Kernel Matrix

I The matrix K is

I Symmetric i.e. K = KT

I Positive definite i.e zTKz > 0, ∀z ∈ RN

⇒ all eigenvalues are positive.

73

Kernel Matrix (contd. . .)

Kernel matrix

74

On using kernels

I Kernels can turn linear models to nonlinear models. In any
model during training and test if input appear as xTi xj then
these models can be kernalised by replacing xTi xj with
φ(xTi)φ(xj) = K(xi, xj)

I The following learning algorithm can be kernalized

I Distance based methods, Perceptron, SVM, linear
regression.

I Many unsupervised learning algorithms like k-means
clustering, PCA.

75

Kernalized SVM training

I The soft margin SVM dual problem is

max
α≤C

LD(α) = αT 1− 1

2
αTGα s.t

N∑
n=1

αnyn = 0

I

Gmm = ymynx
T
mxn = ymynKmn

I we can replace the inner product with a kernel function as

Kmn = K(xm, xn) = φ(xm)Tφ(xn)

I Now SVM learn a linear separator in the kernel induced
feature space F, which is a nonlinear separators in the
original space.

76

Kernalized SVM training (contd. . .)

I For a new test sample x

y = sign(wTx) = sign

(
N∑
n=1

αnynx
T
nx

)

= sign

(
N∑
n=1

αnynK(xn, x)

)
I The SVM weight vectors is

w =

N∑
n=1

αnynφ(xn) =

N∑
n=1

αnynK(xn, .)

I Note w can be explicitly computed and stored only if the
feature map φ of K can be explicitly written i.e K can be
written as

K(xi, xj) = φ(xi)
Tφ(xj)

which is not always possible. 77

kernel Ridge regression

I Ridge repgression problem

w = argmin
w

N∑
n=1

(yn − wTxn)2 + λwTw

I The solution is

w =

(
N∑
n=1

xnx
T
n + λId

)(
N∑
n=1

ynxn

)
= (XTX + λId)

−1XTY X = [x]NxD, Y = [y]Nx1

78

Kernel Ridge regression (contd. . .)

Matrix Identity: We use the following identity from the matrix
algebra

(BTR−1B + P−1)−1BTR−1 = PBT (BPBT +R)−1

Substitute the following
R = IN

B = X

P = ID

79

Kernel Ridge regression (contd. . .)

I We get
w = XT (XXT + λIn)

−1y

= XTα =

N∑
n=1

αnxn

where α = (XXT + λIn)
−1y = (K + λIN)

−1y

Knm = xTnxm ⇒ K = XXT

Here α is a Nx1 vector of dual variables.
I Now we kernalize the model.

w =

N∑
n=1

αnφ(xn) =

N∑
n=1

αnL(xn, .)

where α = (K + λIN)
−1y

Knm = φ(xn)
Tφ(xm)

= K(xn, xm)
80

Kernel Ridge regression (contd . . .)

For a test input x, predict the output y as

y = wTφ(x) =

N∑
n=1

αnφ(xn)
Tφ(x)

=

N∑
n=1

αnK(xn, x)

81

Learning from kernels: Some remarks

I RBF kernel works well in practice.

I Hyperparameters of the kernel may need to be tuned via
cross validation

I There are approaches that use multiple kernel which called
“Multiple kernel learning”.

82

On kernels and Feature learning

Let x1, x2, . . . , xN be given data in RD. Then Gram matrix is
defined as

K =


K(x1, x1) K(x1, x2) . . . K(x1, xN)

K(x2, x1) K(x2, x2) . . . K(x2, xN)

K(xN , x1) K(xN , x2) . . . K(xN , xN)


For any xn define the following N-dim vectors:
ψ(xn) = K(n, .) = [K(xn, x1) K(xn, x2) , . . . K(xn, xN)]

I ψ(xn) can be considered as the new feature representation
of xn

I Each feature represents similarity of xn with other inputs.

83

	Stochastic Gradient Descent and Perceptron
	Support Vector Machines
	Recall SVMs
	Kernel Methods

