MACHINE LEARNING ., .o

» Spectral Clustering



Spectral Methods




What is....7

What are spectral methods?
» Underlying objects in a problem can be represented as
matrices

» Eigenvalues and eigenvectors of these matrices become clue

to a solution.
What are eigenvalues and vectors?

» )\ € C is said to be an eigenvalue of n x n matrix M if it
satisfies Mv = Av for v # 0.

» v said to be eigenvector of M corresponding to A.



Can eigenvalues and eigenvectors make a person rich?

> Yes!

» Google page rank algorithm

» Must read: (K. Bryan and T. Leise, $25,000,000,000
Eigenvector: The Linear Algebra behind Google, SIAM review,
2006)
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» Possibly the most complex

Human Brain

network known to man

nodes)
edges

(

» 100 trillion connections

» 100 billion neurons

)

(

» How can we go about making

sense of all this?




Understanding Human Brain

Local activation Pair-wise interactions Network organization

Credit: Stam et. al, "The organization of physiological brain networks.", Clinical neurophysiology

» One viewpoint: Study the brain from a network science

perspective.

» Model the structural /functional connectivity of brain
regions as "Brain Networks"!.

» Lot of data to work with: fMRI, EEG, MEG etc.

Park and Friston, Science, 2013




Brain Networks: Community Structure

Network analysis

dit: Sporns, 2013

» A common property of Brain
Networks is segregation of
neurons based on anatomical or

functional characteristics®
» In graph theory framework, this

community structure can be

studied with cluster analysis.

?(Sporns, 2013)



Clustering over Brain Networks

A

O = Occipital

O-= Central

O = Frontoparietal
@ = Default mode
= Rich club

Deactivations

Credit?

» A: Functional coactivation network - Different 'Functional’
Clusters
» B, C: Red Nodes represent the 'hub’ nodes in the network

2Crossley et al. "Cognitive relevance of the community structure of the

human brain functional coactivation network." PNAS (2013)



Clustering over Networks: Applications

v

Image segmentation

v

Market segmentation in consumer /business networks

v

Detection of Terrorist Groups in Online Social Networks

v

Epidemic spreading on networks



Graph Partitioning?

Objective:

» High connectivity within clusters

» Few edges across clusters (small

cut)
» Balanced partitions

Applications:

Network Data
partitioning clustering

3Drawings and pictures

are borrowed from Debarghya

Image

segmentation
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Spectral Graph partitioning?

Input Graph Good balanced cut

(Normalized) Find k dominant Run k-means

Adjacency matrix eigenvectors on rows

4Drawings and pictures are borrowed from Debarghya
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Spectral Graph partitioning °

Input Graph Good balanced cut
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(Normalized) Find k dominant Run k-means
Adjacency matrix eigenvectors on rows

r - - .
°Drawings and pictures borrowed from Debarghya
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M a real valued n X n matrix.

» )\ € C is said to be eigenvalue of M if it satisfies Mv = \v
for v # 0. v said to be eigenvector of M.
» Spectrum of M is the set of eigenvalues along with their

multiplicities.
M a real valued n x n symmetric matrix

» If u,v are eigenvectors of distinct eigenvalues then v and v
are orthogonal.

» Eigenvalues of M are real

» M is diagonalizable (there exists an invertible matrix P
such that P~ M P is diagonal)

» There exists L such that LLT = LTL = I such that LAL"

is diagonal.
13
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Some matrices related to graphs

Let G = (V, E) be a graph. |V| =n and |E| =e.
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Some matrices related to graphs

Let G = (V, E) be a graph. |V| =n and |E| =e.

» Adjacency Matrix:

Aij =

A € R™" guch that

0 if i=j,
1 if (i,j) € E,

0 if (i,j) ¢ E.
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Some matrices related to graphs

Let G = (V, E) be a graph. |V| =n and |E| =e.

>

Adjacency Matrix: A € R™ "™ such that

0 if i=j

Aij = 1 if (Z,]) e L,

0 if (i,j) ¢ E.

Degree Matrix: D € R™*"™ is diagonal matrix such that
D;; = deg(i)

Incidence Matrix: B € R"*¢ where rows indexed by
vertices and columns indexed by edges and B;; = 1 if vertex
1 lies on edge j.

Laplacian Matrix: L € R"*" is defined as L = D — A
Normalized Laplacian: L € R™* " is defined as

14



Graph Laplacian

Let G = (V, E) be a graph. |V| =n and |E| =e.
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Graph Laplacian

Let G = (V,E) be a graph. |V| =n and |E| = e. Laplacian:

L € R™"™ such that

(4, it Q=3

Lij=4{ -1 if (i,j)€E,

0 it (i,§) ¢ E.
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Graph Laplacian

Let G = (V, E) be a graph. |V| =n and |E| = e. Laplacian:
L € R™" such that

d; it i=j,

Lij=4{ -1 if (i,j)€E,

0 i (i,5) ¢ E.

THEOREM
Let A1 < o < ... < A\, be eigenvalues of L. Then

L is symmetric and positive semidefinite

A =0

Ao > 0 iff G is connected

Ar = 0 and A\g1q > 0 iff G has exactly k-disjoint

15



Let G = (V,E) be a graph. |V|=n and |E|=e. Let V; C V.
Boundary: The boundary of V; is defined as

oVi={(i,j)e E:ieV;and j¢Vi}

» Cut:
Cut(V1) = |[oV4]

» Expansion Cut
A

ExpansionCut(,V = W1) = Tomp g =y

» Ratio Cut:
_ow| |oV1]

RatioCut(V1,V — V;) = Wil Vo] 16




Cuts

Let G = (V,E) be a graph. |V|=n and |E|=e. Let V; C V.
Boundary: The boundary of V; is defined as

5V1:{(i,j)€E: 1€V andjgéVl}
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Cuts
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Metrics for partitioning

Let G = (V,E) be a graph. |V|=n and |E|=e. Let V; C V.

17



Metrics for partitioning

Let G = (V,E) be a graph. |V|=n and |E|=e. Let V; C V.
Boundary: The boundary of V; is defined as

5V1:{(z',j)eE: 1e€V) andj%Vl}

17



Metrics for partitioning

Let G = (V,E) be a graph. |V|=n and |E|=e. Let V; C V.
Boundary: The boundary of V; is defined as

5V1:{(z',j)eE: 1e€V) andj%Vl}

» Edge Expansion:

¢G = min le‘
|V1|§% ’Vl‘

17



Metrics for partitioning

Let G = (V,E) be a graph. |V|=n and |E|=e. Let V; C V.
Boundary: The boundary of V; is defined as

5V1:{(z',j)eE: 1e€V) andj%Vl}

» Edge Expansion:

¢G = min le‘
|V1|§% ’Vl‘
» Ratio Cut:
. |6V |6V1]
NG = min

< il [V =W



A simple calculation of 27 Lx

2l Ly = 2" Dr — 27 Az

n n
2
= E dix; — E Ajjxix;

ij=1

—de - Z Tixj + T

(i.J)eE
= Z x —I—x Z TiTj + T4
(i.j)eE (i,)er
= Y (wi—ay)’

(i,7)€EE
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Rayleigh Principle or Courant-Fisher Theorem

THEOREM
Let M be a symmetric matrix and let 6; < 0y < ... <6, be
eigenvalues of M. Then

zT Mz
0. = max min =
n—k+1dim7T z€T,xz#0 T T

19



Rayleigh Principle or Courant-Fisher Theorem

THEOREM
Let M be a symmetric matrix and let 6; < 0y < ... <6, be
eigenvalues of M. Then

zT Mz
0. = max min =
n—k+1dim7T z€T,xz#0 T T

THEOREM
Let L be the Laplacian of a graph G = (V, E). Then

T Mz
Ao = min -
zll XX

19



Cheeger’s Inequality

DEFINITION (CHEEGER’S CONSTANT)

Let G = (V, E) be a graph and consider a graph bisection

problem. Then
|6V

G = min ——
W<z Vil

20



Cheeger’s Inequality

DEFINITION (CHEEGER’S CONSTANT)

Let G = (V, E) be a graph and consider a graph bisection

problem. Then
¢ = min —|5Vl|
vil<z VAl

THEOREM (CHEEGER’S INEQUALITY)
Let dmax denote the mazimum degree of G and Ao be the
second smallest eigenvalue of the Laplacian L of G. Then

2 e < VDo

2
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Cheeger’s Inequality

DEFINITION (CHEEGER’S CONSTANT)

Let G = (V, E) be a graph and consider a graph bisection

problem. Then
¢ = min —|5Vl|
vil<z VAl

THEOREM (CHEEGER’S INEQUALITY)
Let dmax denote the mazimum degree of G and Ao be the
second smallest eigenvalue of the Laplacian L of G. Then

2 e < VDo

2

Note: Look at proofs of Mohar and Spielman
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Cheeger’s Inequality (Contd...)

DEFINITION (CHEEGER’S CONSTANT)

Let G = (V, E) be a graph and consider a graph bisection

problem. Then
¢G = min —|6V1|
vil<z VAl

21



Cheeger’s Inequality (Contd...)
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|6V |
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Vil<3 |V1|
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2qﬁg<)\2<(lsi
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Graph Bisection

Recall Ratio Cut:

[oVi] oV
RCut(Vy, V) =
N e AN




Graph Bisection

Recall Ratio Cut:
|6Va]  |oVA|
RCut(V1, Vf) = .
! Vil VY

A simple calculation shall give us this:

Define y € R™ as
Ve e
TAIvT it ien,
(1)

[T .
_ 7|V1|TVI it ¢ V.

Yi =

22



Graph Bisection

Recall Ratio Cut:
|6Va]  |oVA|
RCut(V1, Vf) = .
! Vil VY

A simple calculation shall give us this:

Define y € R™ as

[V . .
Wllv‘ if 7€ ‘/1,
Yi = (1)
(Vi ;
_ |V1|TV| it 1¢V

Then
y! Ly = Reut(Vy, V)
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Graph Bisection

Recall Ratio Cut:

RCut(Vl, va) o |5V1| |6V1|

vl v

A simple calculation shall give us this:

Define y € R™ as

(Ve . .
Wllv‘ if 7€ ‘/1,
Yi = (1)
[Vi] :
_ |V1|TV| it 1¢V

Then
y! Ly = Reut(V7, VF)
Let say V* as subset of R™ denote various y defined as in (*) for

various subsets of V; of V.
22



Graph Bisection (contd..)

Objective:

: T
min y* L
i Yy Ly

23



Graph Bisection (contd..)

Objective:
T
min y* L
i Yy Ly
Trivial Relaxation:
T
min y- L
e y Ly

23



Graph Bisection (contd..)

Objective:
T
min y* L
i Yy Ly
Trivial Relaxation:
T
min y- L
e y Ly

Not very useful as 17L1 = 0

23



Graph Bisection (contd..)

Objective:
T
min y* L
i Yy Ly
Trivial Relaxation:
T
min y- L
yeR"y Yy

Not very useful as 17L1 = 0

Nice Relaxation:

Since y'1 = > icv ¥i = 0, y is orthogonal to 1. Also since
yly = Y iy yf =1, y is a unit norm vector. Hence the relaxed
problem can be
.y Ly
min
ylt yTy

23



Graph k-way partitioning

Ratio Cut:

Reut(Vy, ...

24



Graph k-way partitioning

Ratio Cut:
A
Reut(Va, ..., Vi ;V

Lets define Y: Define y € R™** such that

1 . .
f eV,
NI R
Yie =

0 otherwise.

(**)

24



Graph k-way partitioning

Ratio Cut:
A
Reut(Va, ..., Vi ;V

Lets define Y: Define y € R™** such that

1 . .
f eV,
NI R
Yie =

0 otherwise.

Claim: YTy =1

(**)
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Graph k-way partitioning

Ratio Cut:
A
RCUtVl,..., ;V

Lets define Y: Define y € R™** such that

1 . .
f e Vy,
NI R

Yio =

0 otherwise.

Claim: YTy =1

Claim: Reut(V7,...,V,) = Trace(YTLY)

(**)

24



Graph k-way partitioning

» Objective

min Trace(YTLY)
Yey

25



Graph k-way partitioning

» Objective

min Trace(YTLY)
Yey

» Relaxation

min Trace(Y?LY)
Y eR™
yTy=I
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Graph k-way partitioning

» Objective

min Trace(YTLY)
Yey

» Relaxation

min Trace(Y?LY)
Y eR™
yTy=I

» Optimal Value
YOpt — [1}1 e 'I}k]

matrix of k leading orthonormal eigenvectors of L

25



With Normaized Cuts

Normalized Cut:
k

6V
Neut(Vi,..., Vi) = Vol(V7)
(=1

where Vol(Vy) = >y, deg(i)

26
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6V
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1 . .
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With Normaized Cuts

Normalized Cut:
k

6V
Neut(Vi,..., Vi) = Vol(V7)
(=1

where Vol(Vy) = >y, deg(i)

Lets define Y again: Define y € R™** such that
1 . .
oI if eV,
Yie = (**%)

otherwise.

e}

Claim: YI'DY =1

Claim: Ncut(V,...,V;) = Trace(YTLY)

26



With normalized cuts

» Objective

min Trace(YTLY)
Yey***



With normalized cuts

» Objective

» Relaxation

min Trace(YTLY)
Yey***

min Trace(YTLY)
YeRn?
YT Dy=r1

27



With normalized cuts

» Objective

min Trace(YTLY)
Yey***

» Relaxation

min Trace(YTLY)
YeRn?
YT Dy=r1

» By substituting Y = D3Y the objective translates to

min Trace(?TD_%LD_%?)
YeRn
YTy=1

27



Spectral Clustering Algorithm

Algorithm

Compute graph Laplacian or normalized graph Laplacian

28



Spectral Clustering Algorithm

Algorithm

Compute graph Laplacian or normalized graph Laplacian

Compute k-leading eigenvectors Y € R™** of L
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Spectral Clustering Algorithm

Algorithm

B Compute graph Laplacian or normalized graph Laplacian

[

Compute k-leading eigenvectors Y € R™** of L
Normalize rows of Y and say it is Y
Run k-means on rows of Y

according to this partition V'
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Spectral Clustering Algorithm

Algorithm

B Compute graph Laplacian or normalized graph Laplacian

[

Compute k-leading eigenvectors Y € R™** of L
Normalize rows of Y and say it is Y
Run k-means on rows of Y

according to this partition V'

K-means Step

St = arg max Y — S|
SeRnxk

Shas at most k distinct rows



Clustering - Spectral Clustering

Algorithm 1 Spectral Clustering Algorithm

X
+MXM and number of clusters

Input: Similarity matrix A € R
k

Output: Cluster assignment vector ¢ € {1,...k}™

Compute a diagonal matrix D such that D;; = > y Ajj
Compute L=D — A

Find U € R™** containing top k eigenvectors of L as columns
Compute U € R™** guch that U; = ﬁ, where Uj is the it"
row of U

Obtain ¢ by clustering the rows of U using k-Means




Clustering - Spectral Clustering (contd...)

Spectral clustering can detect non-convex clusters where k-Means fails®

5Tmage Source: http://scalefreegan.github.io

30


http://scalefreegan.github.io

Clustering - Other Issues

» How to select the number of clusters?

» Elbo method, Bayesian model selection, information
theoretic methods etc.

» Which algorithm to use?
» Different algorithms offer different perspectives
» Since clustering is exploratory in nature, must try different
algorithms

» How to evaluate the quality of clustering?
» Ground truth available: Accuracy, Normalized Mutual
Information (NMI) score etc.
» Ground truth unavailable: Modularity, Log Likelihood,
Silhouette coefficient etc.
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