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Model Selection

I Problem: Given a set of models
M = {M1,M2,M3......M∆} choose the model that is
expected to do the best on the test data

I Model selection can be of two types:

I Intra model selection: Instances of same model with
different complexities or hyperparameters or different sizes

I Inter model selection: Different types of learning models
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Model Selection (contd. . . )

I Intra model selection
I K-Nearest Neighbours: Different choices of K
I Polynomial Regression: Different degrees
I Neural Networks: Number of layers
I Decision Trees: Different number of leaves
I Kernel Methods: Different choices of kernels

I Inter model selection
I SVM, KNN, DT ?

I Model selection in unsupervised learning
I Choosing the number of clusters (i.e number of components

in Gaussian Mixture Models)
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Validation or Held Out Data

I Held out data: A fraction of the training data

I Note: Held out set is not the test data. Held out set is also
known as validation set.
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Validation or Held Out Data (Cont. . . )

I Cross Validation

I Train each model using remaining training data

I Evaluate error on the held out set

I Choose the model with the smallest error on held out set

I Issues

I Wastage of training data

I What if the split is not appropriate?
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K-fold Cross-Validation

I Create K equal sized partitions of the training data i.e.,
each partition will have N/K examples

I Train using K − 1 partitions and validate using the
remaining partition

I Repeat this K times, each with different validation
partitions

I Average K validation errors

I Choose the model that gives smallest average validation
error
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K-fold Cross-Validation (Cont. . . )
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Leave-One-Out Cross-Validation

I Now validation set has just one example

I Train using N − 1 examples and validate using the
remaining example

I Average the N validation errors and choose the model that
gives smallest average validation error

I Note: Can be very expensive for large N

I Works well for neighbourhood based methods (since
training time is less)
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Leave-One-Out Cross-Validation (Cont. . . )
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Random Sampling based Cross-Validation

I Subsample a fixed fraction αN (0 < α < 1) as examples of
validation set

I Train using rest of the examples and calculate the
validation error

I Repeat K times, each with a different, randomly chosen
validation set

I Average the K validation errors and choose the model that
gives smallest average validation error
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Random Sampling based Cross-Validation (Cont. . . )
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Bootstrap

I Main Idea: Given N examples, sample N elements with
replacement i.e samples can be repeated

I Use the N examples as training data

I Use the set of examples not selected as the validation data

I For large N , training data will have 63% unique examples

∵ Fraction of examples not picked
(1− 1/N)N ≈ e−1 ≈ 0.368

I Error = (0.632) ∗ errtest examples + (0.368) ∗ errtrain examples
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On 63 percent . . .

I Given N examples, sample N elements with replacement.

I FACT:

I For large N training data consists of about only 63% unique
examples.

I Probability that an example not picked = 1− 1
N

I Fractions of examples not picked (1− 1
N )N = 1

e ≈ 0.368.

I FACT:

I limN→∞(1 + 1
N )N = e

I Let t be any number in an interval [1, 1 + 1
N ]. Then

1
1+ 1

N

≤ 1
t ≤ 1
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On 63 percent (cont. . . )

=⇒
∫ 1+ 1

N
1

1
1+ 1

N

dt ≤
∫ 1+ 1

N
1

1
t dt ≤

∫ 1+ 1
N

1 dt

=⇒ 1
1+N ≤ ln(1 + 1

N ) ≤ 1
N

=⇒ e1+ 1
N ≤ 1 + 1

N ≤ e
1
N

=⇒ e ≤ (1 + 1
N )N+1 and (1 + 1

N )N ≤ e

Divide right inequality with (1 + 1
N ) which gives,

( e
1+ 1

N

) ≤ (1 + 1
N )N ≤ e

As N →∞, ( e
1+ 1

N

)→ e , Hence proved
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Information Theoretic Methods

I Notations:
I - K : number of model parameters
I - L : maximum likelihood of observed data under the model

I Occam’s Razor: Among all possible explanations pick up
the most simplest one

I Akaike Information Criteria (AIC)

AIC = 2K − 2 log(L)

I Bayesian Information Criteria (BIC)

BIC = K log(N)− 2 log(L)

I AIC and BIC are applicable for probabilistic models
I AIC and BIC penalize the model complexity
I Minimum Description Length: Beyond this course
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Information Theoretic Methods(contd. . . )

I Here model complexity is measured by the number of
model parameters

I BIC penalizes the number of parameters more than AIC

I Occam’s Razor: Model with the lowest AIC or BIC is
chosen

I AIC and BIC can be used in unsupervised learning
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Making ML Algorithms Work



On Making Learning Algorithms Work

I ML algorithms are data driven and not procedural.

I It is reasonably difficult to make them work even if we are
sure that our implementation is correct.

I What should one do if the model is not working “very well”
i.e., not getting acceptable levels of test accuracy.

I Note: When training error is too high and the test
accuracy is very less there is something wrong.

I Generalization capacity is one of the most important aspect
to look forward to in a model.

18
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On Making Learning Algorithm Work (contd. . . )

I So what can we do?

I Use more training examples to train a model.

I Use a small number of features.

I Introduce new features in the case of hand picked features.

I Tune hyper-parameters like regularization parameters.

I Optimize for more number of iterations.

I Change the optimization algorithm (GD to SGD or
Newton).

I Give up and move to some other model.

19
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Bias and Variance

I Setting: Assume a supervised learning procedure.

I Assume that model is

y = f(x) + ε

I Given some training data f̂ denotes the estimate of f .

I Assume that
ε ∼ N(0, σ2)

I We have
E[y|x] = f(x)

20
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Bias and Variance (contd. . . )

I A simple calculation, conditioning on X has not been
explicitly mentioned to avoid clutter.

E[(y − f̂)2] = E[y2 + f̂2 − 2yf̂ ]

= E[y2] + E[f̂2]− E[2yf̂ ]

= Var[y] + E[y]2 + Var[f̂ ] + E[f̂ ]2 − 2fVar[f̂ ]

= Var[y] + Var[f̂ ] + (f − E[f̂ ])2

= Var[y] + Var[f̂ ] + E[f − f̂ ]2

= σ2 + Var[f̂ ] + Bias[f̂ ]2

= σ2 + Var[f̂(x)] + Bias[f̂(x)]2

(1)

Bias[f̂(x)] = E[f̂(x)− f(x)] : Error due to wrong model.
Var[f̂(x)] = E[f̂(x)2]− E[f̂(x)]2 : Learner’s sensitivity to
choice of training set. 21



Bias and Variance Trade-off

I FACT:
I Simple model have high bias and small variance.
I Complex model have small bias and high variance.

Figure 1: Model Complexity 1

1Image Source: Scott Fortmann-Roe, Latysheva and Ravarani
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Bias and Variance Trade-off (contd. . . )

Bias Variance Complexity Flexibility Generalizability
Underfitting:Very
simple model

High Low Low Low High2

Overfitting:Very
complex model

Low High High High Low

I If we try to reduce bias by increasing the model complexity,
the variance will increase and vice versa.

2Assuming a reasonable model
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Bias and Variance Trade-off (contd. . . )

I Low accuracy on test data can be due to either

I High Bias (Under-fitting)

I High Variance (Over-fitting)

I Training error and test error can give the diagnosis.

I High Bias: Both training and test error are large.

I High Variance: Small training error, large test error.
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Bias and Variance Trade-off (contd. . . )

I If Bias is high

I Adding more training examples will not usually bring the
bias down.

I Try making model more expressive, e.g., adding more
features or using more complicated model.

I If Variance is high

I Using more training data can bring down the variance.

I Other strategy is to make model simpler.
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Rewind



What we have learned so far

I Machine Learning Workflow

I Data preprocessing

I Feature extraction

I Dimensionality Reduction

I Training

I Validation

I Testing
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What we have learned so far (Contd. . . )

I Distance based classification

I Bayes decision theory and Bayes classifier

I Supervised learning and some foundations

I Linear Regression and Logistic Regression

I Maximum Likelihood and Maximum Apriori estimates

I Overfitting and Regularization
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What we have learned so far (Contd. . . )

I Gradient Descent Algorithms

I Logistic and Linear Regression using Python

I Hyperplane based Classifiers and Peceptron

I Support Vector Machines

I Kernel Methods

I Feedforward Neural Networks

I Backpropagation Algorithm

I Different aspects of training neural networks

I Convolutional Neural Networks

I Recurrent Neural Networks
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What we have learned so far (Contd. . . )

I Unsupervised Learning
I K-means clustering
I PCA
I Spectral Clustering
I Markov Random Fields
I MCMC methods
I RBMs
I Latent Variabel Models and GMMs
I Free Energy and EM algorithm
I Model Selection
I Making ML algorithms work: Bias and Variance
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ML Zoo



Model Selection

How to choose the right model?

I Bias-Variance tradeoff
I Model simplicity
I Bayesian Information Criteria
I Feature Selection

How to debug a machine learning model?

I Detecting bias vs variance
I Choosing the correct hyperparameters
I Ablation studies
I Optimization Issues

30



Choosing the Right Model

I Bias-Variance tradeoff

I Too few parameters - underfitting - bad performance on
both test and training set

I Too many parameters - overfitting - good performance on
training set, bad performance on test set

I Model simplicity

I Always prefer a simpler model - Occam’s Razor

I Simpler models are easy to interpret and debug

I Simpler models also offer computational advantage
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Choosing the Right Model (contd. . . )

I Bayesian Information Criteria

I BIC(θ) = k log n− 2 logL(D; θ)

I k = Number of parameters, n = sample size, L(D; θ) =
likelihood of observed data evaluated at θ

I Choose the model with minimum BIC

I Feature Selection

I Unnecessary to keep features that are: (a) highly correlated
with each other or (b) not correlated with target

I PCA for solving (a), correlation analysis for solving (b)
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Debugging Machine Learning Models

Detecting Bias vs Variance

I Plot the learning
curve

I Bias - Both training
and test errors are
unacceptably high

I Variance - Training
error decreases
quickly but test
error is high

I Use cross-validation
to find the right
model Figure 2: Bias (top) vs Variance (bottom)3

3Image Source: Andrew Ng, Lecture Notes - CS-229
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Debugging Machine Learning Models

I Choosing correct hyperparameters
I Use cross validation

I Ablation Studies
I Check which parts in the pipeline are not working by

replacing them with oracles
I Always find bottlenecks before trying to make changes

I Optimization Issues
I Is the cost function meaningful?
I Has the optimization procedure converged?
I Are the gradients too noisy?
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Choosing the right algorithm

I Is the problem supervised/unsupervised?
I Is it a classification problem? Regression? Clustering? etc.
I How much data is available?
I How much computational power is available?
I What is the desired level of accuracy?
I Is model interpretability a requirement?
I Start by exploring the data - for example by plotting it
I Start with the simplest strategy and optimize performance

bottlenecks at each iteration
I https://docs.microsoft.com/en-us/azure/

machine-learning/studio/algorithm-choice offers a
practical summary
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Glossary

Concept Comments
Activation Func-
tion

Non-linearity inducing function used in
neural networks. Eg. tanh, sigmoid,
ReLU etc.

Ancestral Sampling Sampling technique for directed graph-
ical models

Autoregressive
Model

Models in which value at time t is a
function of values at time 1, . . . , t− 1

Backpropagation The algorithm used for computing gra-
dients in a neural network

Bayesian Informa-
tion Criteria

A criteria used for selecting a model out
of a finite number of models

Bayesian Network A directed, acyclic graph that encodes
a joint probability distribution over the
variables on its nodes by using condi-
tional independence assumptions
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Glossary (contd. . . )

Concept Comments
Belief Propagation An algorithm used for performing infer-

ence in probabilistic graphical model
Bernoulli Random
Variable

Random variable that takes two values
0 and 1

Beta Random Vari-
able

Random variable that takes values in
the range [0, 1]. Usually used as a con-
jugate prior for Bernoulli

Binomial Random
Variable

Random variable that takes non-
negative integer values up to a pre-
specified integer n

Canonical Correla-
tion Analysis

A method used for analyzing the rela-
tionship between two random vectors

Classification A supervised learning problem where
the target variable takes its values in
a finite set of discrete classes
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Glossary (contd. . . )

Concept Comments
Clustering An unsupervised learning problem

where the input data has to be parti-
tioned into meaningful groups

Convolutional Neu-
ral Network

A neural network that exploits spatial
regularity in input data. Usually used
when input is in the form of images

Cost Function The optimization objective that is
solved by a learning problem. Also
known as a loss function

Cross-Validation A method of performing validation for
tuning model hyperparameters

Data Augmenta-
tion

Extending the training set by artifi-
cially injecting variations of existing
data to create new examples

Decision Boundary A function f(x) which serves as a
threshold for binary classification prob-
lem
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Glossary (contd. . . )

Concept Comments
Decision Tree A method commonly used for classifi-

cation
Density Estimation The problem of estimating the proba-

bility distribution from which training
examples have been drawn

Dirichlet Distribu-
tion

A probability distribution over random
vectors whose entries are non-negative
and add up to one

Discriminant Func-
tion

A function that is used to predict the
class to which an input example be-
longs in a classification setting

EM Algorithm Expectation maximization algorithm.
An algorithm for performing maximum
likelihood estimation in models with la-
tent random variables
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Glossary (contd. . . )

Concept Comments
Exponential Distri-
bution

A distribution over positive real valued
random variable with a specific expo-
nential form for pdf

Factor Analysis Probabilistic method for finding a lower
dimensional subspace in which the ob-
served data resides

Feature Extraction Extracting meaningful features from
raw data that are used by a machine
learning algorithm

Forward-Backward
Algorithm

The algorithm used in training Hidden
Markov Models

Gaussian Distribu-
tion

Also known as normal distribution.
One of the most heavily used distribu-
tions

40



Glossary (contd. . . )

Concept Comments
Gaussian Process A stochastic process where every finite

subset of random variables is jointly
Gaussian. Used for classification and
regression. Also offers confidence esti-
mates

Generalization The ability of a machine learning model
to work well on previously unseen data

Generative Model A probabilistic model from which ob-
servations of interest can be sampled
to mimic the training set

Gradient Descent An optimization algorithm based on
first order derivative of a function

Graphical Model A graph representing a probability dis-
tribution over a set of random variables

Hessian Matrix Matrix encoding the second order
derivative of a multivariate function
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Glossary (contd. . . )

Concept Comments
Hidden Markov
Models

Models commonly used for sequential/-
time series data

Hidden/Latent
Variable

An unobserved random variable in a
model

Independent Com-
ponent Analysis

A dimensionality reduction procedure
like PCA

Importance Sam-
pling

A sampling strategy

IID Independent and identically distribu-
tion

Inference The task of finding a distribution over
unobserved random variables condi-
tioned on the observed random vari-
ables

K-NN K-nearest neighbors. This strategy is
used in many problems like classifica-
tion, regression and clustering etc.
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Glossary (contd. . . )

Concept Comments
K-Means A clustering algorithm
Kernel Function A positive definite function that mea-

sures similarity between its two inputs
KL-Divergence A measure of distance between two

probability distribution. It is not a
mathematical distance

Kriging Regression using Gaussian process
Laplace Approxi-
mation

Approximating a probability distribu-
tion locally using a Gaussian based on
the second order derivative

Lasso A variant of linear regression with reg-
ularization

Linear Regression A method used for regression where the
regression function is assumed to be lin-
ear in its parameters
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Glossary (contd. . . )

Concept Comments
Logistic Regression A method used for two class classifica-

tion problems
LSTM A type of recurrent neural network used

for sequential data
MAP Maximum aposterior - the maximizer

of the posterior distribution over a set
of unobserved random variables

Markov Chain A stochastic process where the distri-
bution of a random variable at time t
depends only on the random variable
at time t− 1

Markov Chain
Monte Carlo

A method for sampling from a joint
probability distribution over several
variables

44



Glossary (contd. . . )

Concept Comments
Mixture Model A probabilistic model in which the ob-

served variable is assumed to be drawn
from a mixture of underlying latent dis-
tributions

Multilayer Percep-
tron

A fully connected, feed forward neural
network

Naive Bayes Model A model used for classification that re-
lies on conditional independence of all
features when the class label is ob-
served

Online Learning Learning in a setting where examples
arrive sequentially

Over-fitting The situation when a model performs
good on training set but poorly on test
set

PCA Principle Component Analysis - An al-
gorithm for dimensionality reduction
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Glossary (contd. . . )

Concept Comments
Perceptron Like a single layer neural network with

a step function as the activation func-
tion

Posterior The probability distribution over unob-
served random variables given observed
random variables

Regression A learning problem where the target
variable that is to be learned is con-
tinuous

Regularization Any method aimed at improving the
generalization performance of a learn-
ing algorithm

Rejection sampling A sampling method
Ridge Regression A form of linear regression with regu-

larization
Sequential Data Data where examples are ordered to

form a sequence. The index is usually
time
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Glossary (contd. . . )

Concept Comments
Simplex A set of vectors whose entries are non-

negative and sum up to one
Singular Value De-
composition

A decomposition method for matrices
that expresses a matrix X as X =

UΣVᵀ

Skip Connections Connections in a neural network be-
tween non-consecutive layers

Softmax Function A function that transforms a vector of
real numbers into a vector of same di-
mension from a simplex

Steepest Descent Gradient descent using the direction of
negative gradient at each step

Support Vector
Machines

A method used for classification with
large margin

Test Set A set of examples that have not been
previously seen by the learning algo-
rithm
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Glossary (contd. . . )

Concept Comments
Training Set A set of examples that are used to train

the machine learning model
Uniform Distribu-
tion

A distribution over an interval [a, b]

where each point in the interval is
equally likely

Validation Set A set of examples that are used for
cross-validation to tune model hyper-
parameters

Variational Infer-
ence

An approximate method for perform-
ing inference in complicated probabilis-
tic models
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