Machine Learning:
Modal Selection, Making ML Algorithms
Work and ML Zoo

Ambedkar Dukkipati
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

May 28, 2021



Agenda

Model Selection

Making ML Algorithms Work

Rewind

ML Zoo



Model Selection



Model Selection

» Problem: Given a set of models
M = {My, My, Ms......Ma} choose the model that is
expected to do the best on the test data

» Model selection can be of two types:



Model Selection

» Problem: Given a set of models
M = {My, My, Ms......Ma} choose the model that is
expected to do the best on the test data

» Model selection can be of two types:

» Intra model selection: Instances of same model with
different complexities or hyperparameters or different sizes



Model Selection

» Problem: Given a set of models
M = {My, My, Ms......Ma} choose the model that is
expected to do the best on the test data

» Model selection can be of two types:

» Intra model selection: Instances of same model with
different complexities or hyperparameters or different sizes

» Inter model selection: Different types of learning models
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Model Selection (contd...)

» Intra model selection
» K-Nearest Neighbours: Different choices of K
» Polynomial Regression: Different degrees
» Neural Networks: Number of layers
» Decision Trees: Different number of leaves

» Kernel Methods: Different choices of kernels

» Inter model selection
» SVM, KNN, DT ?

» Model selection in unsupervised learning

» Choosing the number of clusters (i.e number of components
in Gaussian Mixture Models)
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» Held out data: A fraction of the training data

Train Validation

» Note: Held out set is not the test data. Held out set is also
known as validation set.
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Validation or Held Out Data (Cont...)

» Cross Validation

» Train each model using remaining training data

» Evaluate error on the held out set

» Choose the model with the smallest error on held out set
> Issues

» Wastage of training data

» What if the split is not appropriate?
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K-fold Cross-Validation

» Create K equal sized partitions of the training data i.e.,
each partition will have N/K examples

» Train using K — 1 partitions and validate using the

remaining partition

» Repeat this K times, each with different validation

partitions
» Average K validation errors

» Choose the model that gives smallest average validation

error



K-fold Cross-Validation (Cont...)

Test Train on (k — 1) splits

(

k-fold
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Leave-One-Out Cross-Validation

» Now validation set has just one example

» Train using N — 1 examples and validate using the

remaining example

» Average the IV validation errors and choose the model that

gives smallest average validation error
» Note: Can be very expensive for large N

» Works well for neighbourhood based methods (since

training time is less)



Leave-One-Out Cross-Validation (Cont. ..

-« total samples

iteration 1/N: | |

iteration 2/N: || |

iteration 3/N: | ||

iteration N/N: |
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Random Sampling based Cross-Validation

» Subsample a fixed fraction aN (0 < o < 1) as examples of

validation set

» Train using rest of the examples and calculate the

validation error

» Repeat K times, each with a different, randomly chosen

validation set

» Average the K validation errors and choose the model that

gives smallest average validation error
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Random Sampling based Cross-Validation (Cont...)
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Bootstrap

» Main Idea: Given N examples, sample N elements with
replacement i.e samples can be repeated

» Use the N examples as training data
» Use the set of examples not selected as the validation data

» For large NN, training data will have 63% unique examples

*.» Fraction of examples not picked
(1—-1/N)N = e ! ~0.368

> Error = (0.632) * ervicst ezamples + (0.368) * €17 trqin cxamples
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On 63 percent ...

» Given N examples, sample N elements with replacement.
» FACT:
» For large N training data consists of about only 63% unique
examples.
» Probability that an example not picked = 1 — %
» Fractions of examples not picked (1 — %)V =1 ~ 0.368.
» FACT:

> 11mN—>oo(1 —+ %)N = e

» Let t be any number in an interval 1,1+ 3-]. Then

1 1
1<l<a

_
2

14



On 63 percent (cont...)

1+ 1+ 1 I+
=L Yoz 1dt<f1 Nogdt < [N dt

Divide right inequality with (1 + %) which gives,

<(1+:)NVN<e

(&)

As N — o0, (—%+) — e, Hence proved

1+
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Information Theoretic Methods

» Notations:
» - K : number of model parameters
» - L : maximum likelihood of observed data under the model

» Occam’s Razor: Among all possible explanations pick up
the most simplest one

» Akaike Information Criteria (AIC)
AIC =2K — 2log(L)
» Bayesian Information Criteria (BIC)
BIC = Klog(N) — 2log(L)
» AIC and BIC are applicable for probabilistic models
» AIC and BIC penalize the model complexity

» Minimum Description Length: Beyond this course
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Information Theoretic Methods(contd. . .)

» Here model complexity is measured by the number of
model parameters

» BIC penalizes the number of parameters more than AIC

» Occam’s Razor: Model with the lowest AIC or BIC is
chosen

» AIC and BIC can be used in unsupervised learning

17



Making ML Algorithms Work




On Making Learning Algorithms Work

» ML algorithms are data driven and not procedural.

18



On Making Learning Algorithms Work

» ML algorithms are data driven and not procedural.

» It is reasonably difficult to make them work even if we are

sure that our implementation is correct.

18



On Making Learning Algorithms Work

» ML algorithms are data driven and not procedural.
» It is reasonably difficult to make them work even if we are

sure that our implementation is correct.

» What should one do if the model is not working “very well”
1.€., not getting acceptable levels of test accuracy.

18



On Making Learning Algorithms Work

» ML algorithms are data driven and not procedural.
» It is reasonably difficult to make them work even if we are
sure that our implementation is correct.
» What should one do if the model is not working “very well”

1.€., not getting acceptable levels of test accuracy.

» Note: When training error is too high and the test
accuracy is very less there is something wrong.

18



On Making Learning Algorithms Work

» ML algorithms are data driven and not procedural.

» It is reasonably difficult to make them work even if we are
sure that our implementation is correct.

» What should one do if the model is not working “very well”
1.€., not getting acceptable levels of test accuracy.

» Note: When training error is too high and the test
accuracy is very less there is something wrong.

» Generalization capacity is one of the most important aspect
to look forward to in a model.
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>

>

v

v

v

Use more training examples to train a model.

Use a small number of features.

Introduce new features in the case of hand picked features.
Tune hyper-parameters like regularization parameters.

Optimize for more number of iterations.

19



On Making Learning Algorithm Work (contd...)

» So what can we do?

» Use more training examples to train a model.

» Use a small number of features.

» Introduce new features in the case of hand picked features.
» Tune hyper-parameters like regularization parameters.

» Optimize for more number of iterations.

» Change the optimization algorithm (GD to SGD or
Newton).

19



On Making Learning Algorithm Work (contd...)

» So what can we do?

» Use more training examples to train a model.

» Use a small number of features.

» Introduce new features in the case of hand picked features.
» Tune hyper-parameters like regularization parameters.

» Optimize for more number of iterations.

» Change the optimization algorithm (GD to SGD or
Newton).

» Give up and move to some other model.

19
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Bias and Variance

» Setting: Assume a supervised learning procedure.

» Assume that model is

y=fz)+e

» Given some training data f denotes the estimate of f.

» Assume that
e ~N(0,0?)

» We have

Elyla] = f(z)
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Bias and Variance (contd...)

» A simple calculation, conditioning on X has not been

explicitly mentioned to avoid clutter.
El(y — /)] = E[y* + f* — 2yf]
= E[y’] + E[f*] - E[2yf]
| + Ely]* + Var[f] + E[f]* — 2/ Var[f]
= Var[y] + Var[f] + (f — E[f])?
= Varly] + Var[f] + E[f — f]?
=0+ Var[f] + Bias[ﬂ2
= 0 + Var[f(z)] + Bias[f (z)]”

= Varly

(1)
Bias|f(2)] = E[f(z) — f(z)] : Error due to wrong model.

Var[f(x)] = E[f(x)?] — E[f(x)]? : Learner’s sensitivity to
choice of training set.

21
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Bias and Variance Trade-off

» FACT:

» Simple model have high bias and small variance.

» Complex model have small bias and high variance.

Error

Total Error

Variance

Optimum Model Complexity

Bias2

Figure 1: Model Complexity !

Tmage Source: Scott Fortmann-Roe, Latysheva and Ravarani
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Bias and Variance Trade-off (contd...)

Bias Variance Complexity Flexibility Generalizabil

fitting:
Under tting:Very High Low Low Low High?
simple model

fitting:
Overfitting: Very Low High High High Low

complex model

2 Assuming a reasonable model
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Bias and Variance Trade-off (contd...)

Bias Variance Complexity Flexibility Generalizabil

fitting:
Under tting:Very High Low Low Low High?
simple model

fitting:
Overfitting: Very Low High High High Low

complex model

» If we try to reduce bias by increasing the model complexity,

the variance will increase and vice versa.

2 Assuming a reasonable model
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Bias and Variance Trade-off (contd...)

» Low accuracy on test data can be due to either
» High Bias (Under-fitting)

» High Variance (Over-fitting)

v

Training error and test error can give the diagnosis.

v

High Bias: Both training and test error are large.

v

High Variance: Small training error, large test error.

24
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» If Bias is high

» Adding more training examples will not usually bring the
bias down.

» Try making model more expressive, e.g., adding more
features or using more complicated model.

» [f Variance is high

» Using more training data can bring down the variance.
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What we have learned so far

» Machine Learning Workflow

» Data preprocessing

v

Feature extraction
» Dimensionality Reduction

» Training

v

Validation

v

Testing

26
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Recurrent Neural Networks
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Unsupervised Learning

K-means clustering

PCA

Spectral Clustering

Markov Random Fields

MCMC methods

RBMs

Latent Variabel Models and GMMs
Free Energy and EM algorithm
Model Selection

Making ML algorithms work: Bias and Variance
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Model Selection

How to choose the right model?

v

Bias-Variance tradeoff

v

Model simplicity

v

Bayesian Information Criteria

Feature Selection

v

How to debug a machine learning model?

» Detecting bias vs variance
» Choosing the correct hyperparameters
» Ablation studies

» Optimization Issues
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Choosing the Right Model

» Bias-Variance tradeoff

» Too few parameters - underfitting - bad performance on
both test and training set

» Too many parameters - overfitting - good performance on
training set, bad performance on test set

» Model simplicity
» Always prefer a simpler model - Occam’s Razor
» Simpler models are easy to interpret and debug

» Simpler models also offer computational advantage

31



Choosing the Right Model (contd...)

» Bayesian Information Criteria
» BIC(0) = klogn — 2log L(D;0)

» k = Number of parameters, n = sample size, L(D;0) =
likelihood of observed data evaluated at 6

» Choose the model with minimum BIC

» Feature Selection

» Unnecessary to keep features that are: (a) highly correlated
with each other or (b) not correlated with target

» PCA for solving (a), correlation analysis for solving (b)
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Debugging Machine Learning Models

Detecting Bias vs Variance

» Plot the learning

curve

» Bias - Both training
and test errors are
unacceptably high

» Variance - Training
error decreases
quickly but test
error is high

» Use cross-validation
to find the right

model

error

\‘ Test error

Training error

error

Desired performance

m (training set size)

—— Test error

Desired performance

Training error

m (training set size)

Figure 2: Bias (top) vs Variance (botton
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Debugging Machine Learning Models

» Choosing correct hyperparameters

» Use cross validation

» Ablation Studies
» Check which parts in the pipeline are not working by
replacing them with oracles

» Always find bottlenecks before trying to make changes

» Optimization Issues
» Is the cost function meaningful?
» Has the optimization procedure converged?

» Are the gradients too noisy?
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Choosing the right algorithm

Is the problem supervised /unsupervised?

Is it a classification problem? Regression? Clustering? etc.
How much data is available?

How much computational power is available?

What is the desired level of accuracy?

Is model interpretability a requirement?

Start by exploring the data - for example by plotting it
Start with the simplest strategy and optimize performance
bottlenecks at each iteration
https://docs.microsoft.com/en-us/azure/
machine-learning/studio/algorithm-choice offers a

practical summary
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Glossary

Concept

Comments

Activation  Func-

tion

Ancestral Sampling

Autoregressive
Model
Backpropagation

Bayesian Informa-
tion Criteria
Bayesian Network

Non-linearity inducing function used in
neural networks. Eg. tanh, sigmoid,
ReLU etc.

Sampling technique for directed graph-
ical models

Models in which value at time ¢ is a
function of values at time 1,...,¢t —1
The algorithm used for computing gra-
dients in a neural network

A criteria used for selecting a model out
of a finite number of models

A directed, acyclic graph that encodes
a joint probability distribution over the
variables on its nodes by using condi-
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Glossary (contd...)

Concept

Comments

Belief Propagation

Bernoulli Random
Variable

Beta Random Vari-
able

Binomial Random
Variable

Canonical Correla-
tion Analysis
Classification

An algorithm used for performing infer-
ence in probabilistic graphical model
Random variable that takes two values
0 and 1

Random variable that takes values in
the range [0, 1]. Usually used as a con-
jugate prior for Bernoulli

Random variable that takes non-
negative integer values up to a pre-
specified integer n

A method used for analyzing the rela-
tionship between two random vectors
A supervised learning problem where
the target variable takes its values in
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Glossary (contd...)

Concept

Comments

Clustering

Convolutional Neu-

ral Network

Cost Function

Cross-Validation

Data  Augmenta-

tion

An unsupervised learning problem
where the input data has to be parti-
tioned into meaningful groups

A neural network that exploits spatial
regularity in input data. Usually used
when input is in the form of images
The optimization objective that is
solved by a learning problem. Also
known as a loss function

A method of performing validation for
tuning model hyperparameters
Extending the training set by artifi-
cially injecting variations of existing

data to create new examples

38



Glossary (contd...)

Concept

Comments

Decision Tree

Density Estimation

Dirichlet Distribu-

tion

Discriminant Func-

tion

EM Algorithm

A method commonly used for classifi-
cation

The problem of estimating the proba-
bility distribution from which training
examples have been drawn

A probability distribution over random
vectors whose entries are non-negative
and add up to one

A function that is used to predict the
class to which an input example be-
longs in a classification setting
Expectation maximization algorithm.
An algorithm for performing maximum

likelihood estimation in models with la-
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Glossary (contd...)

Concept

Comments

Exponential Distri-
bution

Factor Analysis

Feature Extraction

Forward-Backward
Algorithm
Gaussian Distribu-

tion

A distribution over positive real valued
random variable with a specific expo-
nential form for pdf

Probabilistic method for finding a lower
dimensional subspace in which the ob-
served data resides

Extracting meaningful features from
raw data that are used by a machine
learning algorithm

The algorithm used in training Hidden
Markov Models

Also known as normal distribution.
One of the most heavily used distribu-

tions
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Glossary (contd...)

Concept

Comments

Gaussian Process

Generalization

Generative Model

Gradient Descent

Graphical Model

A stochastic process where every finite
subset of random variables is jointly
Gaussian. Used for classification and
regression. Also offers confidence esti-
mates

The ability of a machine learning model
to work well on previously unseen data
A probabilistic model from which ob-
servations of interest can be sampled
to mimic the training set

An optimization algorithm based on
first order derivative of a function

A graph representing a probability dis-
tribution over a set of random variables
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Glossary (contd...)

Concept

Comments

Hidden Markov
Models
Hidden/Latent
Variable
Independent Com-
ponent Analysis
Importance Sam-
pling

11D

Inference

Models commonly used for sequential /-
time series data

An unobserved random variable in a
model

A dimensionality reduction procedure
like PCA

A sampling strategy

Independent and identically distribu-
tion

The task of finding a distribution over
unobserved random variables condi-
tioned on the observed random vari-

ables
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Glossary (contd...)

Concept

Comments

K-Means
Kernel Function

KL-Divergence
Kriging

Laplace  Approxi-
mation

Lasso

Linear Regression

A clustering algorithm

A positive definite function that mea-
sures similarity between its two inputs
A measure of distance between two
probability distribution. It is not a
mathematical distance

Regression using Gaussian process
Approximating a probability distribu-
tion locally using a Gaussian based on
the second order derivative

A variant of linear regression with reg-
ularization

A method used for regression where the

regression function is assumed to be lin-
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Glossary (contd...)

Concept

Comments

Logistic Regression

LSTM

MAP

Markov Chain

Markov
Monte Carlo

Chain

A method used for two class classifica-
tion problems

A type of recurrent neural network used
for sequential data

Maximum aposterior - the maximizer
of the posterior distribution over a set
of unobserved random variables

A stochastic process where the distri-
bution of a random variable at time ¢
depends only on the random variable
at timet —1

A method for sampling from a joint
probability distribution over several
variables
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Glossary (contd...)

Concept

Comments

Mixture Model

Multilayer Percep-
tron
Naive Bayes Model

Online Learning

Over-fitting

A probabilistic model in which the ob-
served variable is assumed to be drawn
from a mixture of underlying latent dis-
tributions

A fully connected, feed forward neural
network

A model used for classification that re-
lies on conditional independence of all
features when the class label is ob-
served

Learning in a setting where examples
arrive sequentially

The situation when a model performs
good on training set but poorly on test
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Glossary (contd...)

Concept

Comments

Perceptron

Posterior

Regression

Regularization

Rejection sampling
Ridge Regression

Like a single layer neural network with
a step function as the activation func-
tion

The probability distribution over unob-
served random variables given observed
random variables

A learning problem where the target
variable that is to be learned is con-
tinuous

Any method aimed at improving the
generalization performance of a learn-
ing algorithm

A sampling method

A form of linear regression with regu-
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Glossary (contd...)

Concept

Comments

Simplex

Singular Value De-

composition

Skip Connections

Softmax Function

Steepest Descent

Support Vector
Machines

A set of vectors whose entries are non-
negative and sum up to one

A decomposition method for matrices
that expresses a matrix X as X =
Uxvrt

Connections in a neural network be-
tween non-consecutive layers

A function that transforms a vector of
real numbers into a vector of same di-
mension from a simplex

Gradient descent using the direction of
negative gradient at each step

A method used for classification with

large margin
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Glossary (contd...)

Concept

Comments

Training Set

Uniform Distribu-

tion

Validation Set

Variational Infer-

ence

A set of examples that are used to train
the machine learning model

A distribution over an interval [a,b]
where each point in the interval is
equally likely

A set of examples that are used for
cross-validation to tune model hyper-
parameters

An approximate method for perform-
ing inference in complicated probabilis-

tic models
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