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Note

I These notes is prepared for the Machine Learning course
taught at
IISc.

I These notes should be used in conjunction with the
classroom or
online lectures.

I Where ever some mathematical calculations are involved, I
prefer using the blackboard on write on the screen in the
online mode. But usually, slides are one-to-one
correspondence with what I
thought during the lectures.

I Time to time, I continuously try to improve these notes and
correct the typos. If you see any typos, please mail me at
ad@iisc.ac.in
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About the course



On ML

I Why getting into or mastering ML need not be very easy?

I If one is starting fresh, there is an ocean out there

I If one already knows some concepts, one can be confused
about what to learn next

I Machine learning can be viewed as list of models or
methods

I Or...solutions to some practical problems based on few
foundational principles, that involve probabilistic and
statistical concepts.
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The Best Strategy

I One should constantly....

I strengthen the foundations

I try to understand relations between different paradigms and
methods

I most importantly, always experiment...

4



People Involved

I Instructors
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Introduction



Machine Learning 101 - Building the hype!

CycleGAN: Image to Image Translation1

I Using video games to train autonomous driving systems
I More realistic image filtering in smartphone cameras etc.

1Image Source: https://junyanz.github.io/CycleGAN/
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Machine Learning 101 - Building the hype!

Colorizing a Grayscale Image2

I Converting all old movies into their colored version

I Restoring old paintings etc.

2Image Source: https://github.com/ImagingLab/Colorizing-with-GANs
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Machine Learning 101 - Building the hype!

Neural FaceApp3

I Victim identification during police investigations

I Smartphone filters etc.
3Image Source: Google
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Machine Learning 101 - Building the hype!

Original Sentence Flipped Sentiment
the film is strictly routine ! the film is full of

imagination.
after watching this movie, I

felt that disappointed.
after seeing this film, I’m a

fan.
the acting is uniformly bad

either.
the performances are

uniformly good.
this is just awful. this is pure genius.

Flipping sentiment of a sentence4

I De-radicalizing posts on Facebook
I Removing offensive sentences from movie captions

4Source: Toward Controlled Generation of Text 10



Machine Learning 101 - Building the hype!

Chatbots5

I In personal assistants like Siri, Google Assistant etc.
I Challenges include sustaining a long range conversation etc.

5Image Source: A Deep Reinforcement Learning Chatbot
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Machine Learning 101 - Building the hype!

Visual Question Answering6

I Transcribing videos to generate documentation of a
procedure

I Helping blind people in sensing the world around them
6Image Source: Making V in VQA Matter 12



Machine Learning 101 - Building the hype!

Speech Generation7

I Talking in a real world setting
I Personal assistants

7Image Source: Google
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Machine Learning 101 - Building the hype!

Generating Music8

I Conditionally generating music
I Can we replace the monotonous music at customer cares

and personalize it to users?
8Image Source: Google
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Machine Learning 101 - Building the hype!

I Find topics from
billions of documents
in completely
unsupervised way

I Used for improving
search results,
categorizing
documents, finding
trends in literature
etc.

I The most commonly
used algorithm
(LDA) is efficient
enough to run on a
single laptop

Topic Modeling9

9Image Source: Google
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Machine Learning 101 - Building the hype!

Countless other Applications:

I Biology and Medicine:
I Protein interaction prediction
I Automated drug discovery
I Predicting diseases faster than human experts etc.

I Security:
I Applications like face recognition
I Detecting fraudulent transactions
I Automated video surveillance etc.

I Social Sciences
I Spreading ideas in a social network
I Friend recommendations
I Analyzing large scale surveys etc.
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Machine Learning 101 - Building the hype!

I Information Extraction
I Web search
I Question answering
I Knowledge graph mining etc.

I Economics and Finance
I Algorithmic Trading
I Analyzing purchase patterns and market analysis
I e-commerce applications like product recommendations etc.

I Others
I Automated theorem proving
I Robotics
I Advertising
I And many more. . .
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Data and Models



Basics: Data and Models

I Real world offers you data

I A model is a representation
of real world

I Data obtained from real
world is used for finding
parameters of the model

I The model is then used for
making predictions or
gaining insights about the
real world
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Basics: Data and Models - Example 1

I Real World: Sentences
used by people in
conversations about
machine learning

I Data: Sentences uttered
during this talk

I Model: A probability
distribution over all
possible sentences of length
≤ 50 with Markov
assumption
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Basics: Data and Models - Example 2

I Real World: Students
and friendships among
them

I Data: An observed
friendship network
involving students from
grade one and grade two in
a school

I Model: Assume people in
same grade become friends
with probability p and
students across grades
become friends with
probability q
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Representation of Data

Most often we represent data in the form of a vector in
real space

I Feature vector corresponding to a speech signal

I Feature vector corresponding to a region to predict housing
prices

I Feature vector corresponding to pixels of an image

I Feature vector corresponding to a word or a sentence in
natural language text (Is this possible?)
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Different types of data

I Spatially Regular Data
I Images

I Sequential Data
I Sentences
I Time series data

I Relational Data
I Tabular data collected during surveys
I Graph structured data

I Multimodal Data
I videos
I medical records
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Basics: Models

I A model is an abstraction of real world

I Model the aspects of real world that are to be studied
I e.g., assume an auto-regressive model on words in a sentence

I A very complicated model is usually of no use
I Should be flexible enough to represent phenomenon of

interest
I Should be tractable

I e.g., assuming that the target variable is a linear function
of features in linear Gaussian models for regression
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Basics: Models - Examples

I Linear Gaussian model - Regression

I Naïve Bayes model - Classification

I Gaussian mixture model - Clustering

I Hidden Markov model - Discrete valued time series

I Linear dynamical system - Continuous valued time series

I Restricted Boltzmann machines - Data with latent variables

I Stochastic Blockmodels - Networks

I etc.
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Machine Learning Workflow



Machine Learning Workflow

Machine Learning Workflow
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Machine Learning Workflow - Data Pre-processing

I Data Cleaning

I Removing outliers
I Filling in missing values
I Denoising the data

I Normalization

I Making data zero mean
I Scaling the values

I Integration

I Combine data from different sources
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Machine Learning Workflow - Feature Extraction

I Manually Finding Features

I Using domain expertise

I Finding relevant information

I e.g., using Mel-Frequency Cepstrum (MFC) to represent
sound signals

I Automatically Discovering Features

I Features themselves are learnable

I These feature are usually not interpretable

I e.g., Multi Layer Perceptrons (MLP)
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Machine Learning Workflow - Dimensionality Reduction

I Finding a compressed representation of data that contains
approximately the same information

I Discard features that are not relevant or highly correlated

I Reduces the number of parameters needed in the model

I Leads to better generalization performance

I Use methods like Principle Component Analysis (PCA)
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Machine Learning Workflow - Other Components

I Training
I Choose a model
I Use observed data to learn parameters of the model
I e.g., learning weights of a neural network

I Validation
I Use validation strategies to fine tune model

hyperparameters
I Perform model selection
I e.g., using K-fold cross validation to select a value of

regularization parameter
I Testing

I Compute the performance on unseen data
I Diagnose the problems
I Deploy the model
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Distance Based Classifiers



Data Representation

I Learning modules are trained with "data"
I Supervised: Data comes as a set of input-output pairs
{(xn, yn)}Nn=1

I Unsupervised: Data as inputs {xn}Nn=1

I Each input xn is usually a D dimensional feature vector
I Say xn is usually a 7× 7 image. It can be represented using

a vector of size 49 of pixel intensities

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
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◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦


−→



◦
◦
◦
◦
. . .

◦
◦
◦


30



Data Representation(contd...)

I Note: In certain applications input xn need not be a fixed
length of vector. For example protein sequences, etc.

I Output yn can be

I real values (eg. regression)

I categorical (eg. classification)

I structured object (eg. structured output learning)

I The learning task becomes tougher and tougher when the
dimensionality of data is very high.
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Data: In what form?

I Data is always "raw".

I Most machine learning models works only when the "nice"
and "appropriate" and "useful" features are fed to them.

I So feature can be learned or extracted

I Learned: The model/algorithms automatically learn the
useful features

I Extracted: Hand-crafted features defined by a domain
expert.
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Data in vector space representation

I Each feature vector xn ∈ RD×1 is a point in the D
dimensional vector space RD

I By putting data in a vector space we can incorporate all
tools that is provided by Linear Algebra in our problem
solving

I More importantly matrix computations play an important
role in machine learning
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Data in vector space representation(contd...)

I Vector space provides us with distance and similarity
measures

I Euclidean distance between xn, xm ∈ RD

d(xn, xm) = ‖xn − xm‖2 =
√

(xn − xm)T (xn − xm)

=

√√√√ D∑
d=1

(xnd
− xmd

)2
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Data in vector space representation(contd...)

I Vector space provides us with distance and similarity
measures

I Inner product similarity between xn, xm ∈ RD (cosine
similarity)

〈xn, xm〉 = xTnxm =

D∑
d=1

xnd
xmd

I `1 distance between xn, xm ∈ RD

`1(xn, xm) = ‖xn − xm‖1 =

D∑
d=1

||xnd
− xmd

||
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Data Matrix

I x = {x1, . . . , xn} denotes data in form of N ×D feature
matrix

I y = {y1, . . . , yN} denotes labels/responses in the form of an
N × 1 label/response vector.
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Setting

I Given N labelled training examples {xn, yn}Nn=1 from two
classes (+ve and -ve)

I Assume positive is green and negative is Red.
I Assume we have N+ examples from +ve class and N−

examples from negative class.
I Aim: Learn a model to predict label y for a new test

sample.
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A Simple Decision Rule based on Means

Rule: Assign test sample to classes with closer mean.

I The mean of each class is given by

µ− =
1

N−

∑
yn=−1

xn

µ+ =
1

N+

∑
yn=+1

xn

I Note:- Can we just store the two means and throw away
data.
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A Simple Decision Rule based on Means (contd. . . )

I Distances from each mean are given by

‖µ− − x‖2 = ‖µ−‖2 + ‖x‖2 − 2〈µ−, x〉

‖µ+ − x‖2 = ‖µ+‖2 + ‖x‖2 − 2〈µ+, x〉

I Here

I ‖a− b‖2 denotes squared Euclidean distance between a and
b.

I 〈a, b〉 denotes inner product of two vector a and b.

I ‖a‖2 = 〈a, a〉 denotes squared l2 norm of a.
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The Decision Rule

I Denote the decision rule by f : χ −→ {+1,−1}

f(x) = ‖µ− − x‖2 − ‖µ+ − x‖2

= 2〈µ+ − µ−, x〉+ ‖µ−‖2 − ‖µ+‖2

I Decision Rule: if f(x) > 0 then x in +1
otherwise x in -1

i.e. y = sign[f(x)]
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The Decision Rule

I Note: f(x) denotes a hyperplane based classification rule,
where w = µ+ − µ− represents the direction rule to the
hyperplane.

I This specific form of decision rule appears in many
supervised algorithms.

I Inner product can be replaced by more general similarity
measures. 41



Decision Rule Based on Means: Some Comments

I It can be implemented easily.
I Would require plenty of traning data for each class.

I Because to estimate mean reliably
I Note: if we have class imabalanced data, this will not work.
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Decision Rule Based on Means: Some Comments (contd
..)

I It can only learn linear decision boundaries.
I We need to replace Euclidean distance by nonlinear

distance function. Kernels?

I Data: We assume that there is an underlying probability
distribution.

I Mean can be thought of as one characteristic of a
distribution.

I How about modelling each class by a class conditional
probability distribution.

I Then compute distances from these distributions.
I Linear Discriminant Analysis
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Bayesian Decision Theory



Bayesian Decision Making in Real Life

Let us help a fisherman trying to classifying his catch. For
simplicity, let us consider that he has to classify between Sea
bass (ω1) and Salmon (ω2).

I It is a two class calssification problem

I We will study this in various scinarios
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Decision Rule: Based on Prior Knowledge

Fishermen will have some domain or prior knowledge. Suppose,
except for this we do not have any other knowledge.

I Suppose, in a particular season there is a more probability
of catching sea bass or in a particular area probability of
getting Salmon is more.

I Suppose the prior probabilities are P (ω1) and P (ω2).
(P (ω1) + P (ω2) = 1 & P (ω1), P (ω2) ≥ 0)

I Rule (or common sense) says

Decide ω1 if P (ω1) > P (ω2)

ω2 otherwise
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Decision Rule: Based on Prior Knowledge (contd...)

How good is this?

I It looks fine but for every catch the class label is going to
be the same.

I Can we feed the image of of the fish to our model so that it
can consider its features before deciding on the label?

46



Decision Rule: Based on class conditional probabilities

Aim here is to get features of the fish and feed it to our model.

I Suppose we can get features of the fish like measurement of
weight (x).

I We will consider the class conditional densities
P (x|ωi), i = 1, 2 ), which are also called likelihood.

I P (x|ωi) denotes probability of observing a particular
feature(s) x provided it has a class lablel ωi.
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Decision Rule: Based on class conditional probabilities
(Contd...)

Now the decision Rule:

Decide ω1 if P (x|ω1) > P (x|ω2)

ω2 otherwise

Likelihoods
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Bayesian way....

Bayesian formulation helps in combining prior knowledge and
class conditional probabilities into a single rule by finding
posterior distribution P (ωi|x)

Decision Rule: Using posterior distribution

Using bayes rule

P (ωi|x) =
P (x|ωi)P (ωi)

P (x)
i = 1, 2

where

P (x) =
∑
i=1,2

P (x|ωi)P (ωi)

P (x) is called evidence

posterior =
likelihood × prior

evidence

Rules says

ω1 if P (ω1|x) > P (ω2|x)

ω2 otherwise

Note:
Prior and likelihood are
the main factors deter-
mining the posterior prob-
ability the evidence can be
considered as scaling. 49



Error Analysis

The probability of error is

P (error|x) = P (ω1|x) if we decide ω2

= P (ω2|x) if we decide ω1

The overall probability of error is

P (error) =

∫ +∞

−∞
P (error, x)dx =

∫ +∞

−∞
P (error|x)P (x)dx

The bayes decision rule says

ω1 if P (ω1|x) > P (ω2|x)

ω2 otherwise

So, it minimizes P (error|x). Hence P (error) is also minimized
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Bayesian Decision Theory: A General Setting

{ω1, ω2, . . . , ωc} : a finite set of classes
{α1, α2, . . . , αa} : a finite set of actions
λ(αi|ωj) , i = 1, 2, . . . , a

and j = 1, 2, . . . , c

: denotes a loss function that de-
scribes loss for taking action αi when
the of the x value is ωi

x ∈ RD : is a feature vector which is an in-
stance of random vectors

P (x|ωj), j = 1, 2, . . . , c : class conditional probability density
function or likelihood

P (ωj), j = 1, 2, . . . , c : prior probabilities

I Posterior probabilities P (ωi|x) j = 1, 2, . . . , c can be
calculated using the bayes formula P (ωi|x) = P (x|ωi)P (ωi)

P (x)

I where the evidence P (x) =
∑c

j P (x|ωj)P (ωj)
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Bayesian Decision Rule as Risk Minimization

Suppose given x ∈ RD, we take action αi, then the expected loss
associated with taking action αi is

R(αi|x) =

c∑
j=1

λ(αi|ωj)P (ωj |x)

This is called the conditional risk. In continuous form overall
risk is

R =

∫
x∈RD

R(α(x)|x)P (x)dx
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Bayesian Decision Rule as Risk Minimization

Aim: Find the decision rule that minimizes the overall risk R.

I The minimum risk is called the Bayes risk

I Suppose α∗(x) = arg min
α(x)={α1,α2,...,αa}

R(αi|x)

I Then
R∗ =

∫
x∈RD

R(α∗(x)|x)P (x)dx

is the minimum risk.
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Two Class Classification and Likelihood Ratio

I Let action αi denotes deciding that true class label is ω1,
α2 denotes deciding that true class is ω2

I Let λij = λ(αi|ωj) for i = 1, 2 and j = 1, 2, denotes the loss
incurred when thte decision is αi but true class is ωj

I The conditional risk for any observation x ∈ Rd is

R(α1|x) = λ11P (ω1|x) + λ12P (ω2|x)

R(α2|x) = λ21P (ω1|x) + λ22P (ω2|x)

I Decision rule is

ω1 if R(α1|x) < R(α2|x)

ω2 otherwise

I Here we are taking decision based on the risk not by
minimum posterior probabilities.
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Two Class Classification and Likelihood Ratio (contd...)

R(α1|x) < R(α2|x)

λ11P (ω1|x) + λ12P (ω2|x) < λ21P (ω1|x) + λ22P (ω2|x)

I We have λ21 = λ(α2|ω1) loss occurred for being wrong
I We have λ11 = λ(α1|ω1) loss occurred for being right
I Similarly λ12 and λ22
I It is sensible to assume λ21 > λ11 and λ12 > λ22 as risk in

being wrong is greater than for being right.
I So, λ21 − λ11 > 0 and λ12 − λ22 > 0

I Now by minimum risk strategy we decide ω1 if
(λ21 − λ11)P (ω1|x) > (λ12 − λ22)P (ω2|x) else ω2.
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Two Class Classification and Likelihood Ratio (contd...)

Now using bayes theorem we write the previous strategy in
terms of prior and likelihood as given below.

(λ21 − λ11)P (ω1)P (x|ω1) > (λ12 − λ22)P (ω2)P (x|ω2)

=⇒ P (x|ω1)

P (x|ω2)
>
λ12 − λ22
λ21 − λ11

P (ω2)

P (ω1)

=⇒ likelihood ratio > quantity independent of x

=⇒ ψ(x) > c, where ψ(x) = P (x|ω1)
P (x|ω2)
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Two Class Classification and Likelihood Ratio: Summary

I Bayes rule can be interpreted as deciding ω1 if the
likelihood ratio exceeds a threshold value that is
independent of x.

I Assumption is that we know the class conditional densities.

I In practical setting we learn likelihood from the training
dataset. That is the threshold c act as prior and ψ(x) act as
classifier whose parameters are to be learned from the data.
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Classification with 0-1 loss

I {ω1, ω2, ...., ωc} a finite set of classes
I {α1, α2, ...., αc} a finite set of actions corresponding to
{ω1, ω2, ...., ωc}

I 0-1 loss is define as

λ(αi|ωj) = 0 if i = j

= 1 if i 6= j

i, j = 1, 2, ..c

This assigns no loss to a correct
decision and assigns unit loss to
wrong decision. Now conditional
risk

R(αi|x) =
c∑
j

λ(α)i|ωj)P (ωj |x) =
∑
j 6=i

P (ωj |x) = 1− P (ωi|x)

=⇒ If we decide on ωi if P (ωj |x) is maximum

=⇒ R(αi|x) is minimum =⇒ R(x) is minimum
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Bayes rule in action

(a) Likelihood (b) Posterior
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Bayes rule in action

Likelihood Ratio and threshold for decision boundary
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Minimax Criterion (Two class case)

Aim: To design the classifier such a way that it performs well
over a range of prior probabilities.

Example: We would like to design our classifier such a way
that it can be used in a difficult place where we do not know the
prior probabilities

Implies: Design the classifier so that the worst over all risk for
any value of prior is as small as possible. That is

Minimize the Maximum Possible Risk
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Minimax Criterion (cont. . . )

Let R1 be the region where we decide ω1.
Let R2 be the region where we decide ω2

We have

R =

∫
RD

R(α(x)|x)P (x)dx

=

∫
R1

R(α(x)|x)P (x)dx +

∫
R2

R(α(x)|x)P (x)dx

=

∫
R1

[λ11P (ω1|x) + λ12P (ω2|x)] +

∫
R2

[λ21P (ω1|x) + λ22P (ω2|x)]
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Minimax Criterion (contd. . . )

Using Bayes theorem

R =

∫
R1

[λ11P (ω1)P (x|ω1) + λ12P (ω2)P (x|ω2)]dx +∫
R2

[λ21P (ω1)P (x|ω1) + λ22P (ω2)P (x|ω2)]dx

We have

I P (ω2) = 1− P (ω1) and
I

∫
R1
P (x|ω1)dx = 1−

∫
R2
P (x|ω1)dx

Now we can write it R as

R(P (ω1)) = λ22 + (λ12 − λ22)
∫
R1

P (x|ω1)dx+ P (ω1)
[
(λ11 − λ22)

+ (λ21 − λ11)
∫
R2

P (x|ω1)dx− (λ12 − λ22)
∫
R1

P (x|ω2)dx
]
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Minimax Classification

I Once decision boundary is set (i.e R1 and R2) the overall
risk is linear in P (ω1)

I If we can find boundary such that constant of
proportionality is zero then corresponding decision
boundary gives the minimax solution.

I

(λ11−λ22)+(λ21−λ11)
∫
R2

P (x|ω1)dx−(λ12−λ22)
∫
R1

P (x|ω2)dx

is zero for minimax solution
I λ22 + (λ12 − λ22)

∫
R1
P (x|ω1)dx is the minimax risk.

I This minimax formulation has applications in game theory.
Think that an adversary is providing with a wrong prior.
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Discriminant Functions

Now we try to describe classifiers as discriminant functions. Let
ω1, ω2, . . . , ωc are class labels and features are D-dimentional
vectors.
AIM: Now the aim is to learn a function

g : RD → {ω1, . . . , ωc}

We realize the function g by using g1, ..., gc : RD → R as follows.
and with decision rule

g(x) = ωi if

gi(x) > gj(x) ∀ j = 1, 2, . . . , c & j 6= i
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Bayes Classifier as Discriminant Functions

The bayes classifier can be represented using discriminant
functions. In that case

gi(x) = −R(αi|x) i = 1, 2, .., c

∵ Maximum discriminant function corresponds to minimum
conditional risk. For 0− 1 loss function (minimum error rate)
we have

gi(x) = P (ωi|x) i = 1, 2, ..., c

∴ Maximum discriminant function corresponds to maximum
posterior probability
Now,

gi(x) = P (ωi|x) =
P (x|ωi)P (ωi)∑c
i=1 P (x|ωi)P (ωi)
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Bayes Classifier as Discriminant Functions (contd..)

Now,

g
(1)
i (x) = P (ωi|x) =

P (x|ωi)P (ωi)∑c
i=1 P (x|ωi)P (ωi)

g
(2)
i (x) = P (x|ωi)P (ωi)

g
(3)
i (x) = lnP (x|ωi) + lnP (ωi)

All the discriminant functions g(1), g(2),& g(3) are equivalent.

For two category case, suppose g1 and g2 are discriminant
functions corresponding to two classes.
Let g(x) = g1(x)− g2(x) and use the following decision rule

Decide ω1 if g(x) > 0

ω2 otherwise
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Bayes Classifier as Discriminant Functions two class case

For two category case,
suppose g1 and g2 are discriminant functions corresponding to
two classes.
Let g(x) = g1(x)− g2(x) and use the following decision rule

Decide ω1 if g(x) > 0

ω2 otherwise

Now,

g(x) = P (ω1|x)− P (ω2|x)

= ln
P (x|ω1)

P (x|ω2)
+ ln

P (ω1)

P (ω2)
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Discriminant Functions for Normal densities

I Normal distribution

P (x) =
1√
2πσ

exp [−1

2
(
x− µ
σ

)2]

I Multivariate normal distribution

P (x) =
1

(2π)d/2|Σ|1/2
exp [−1

2
(x− µ)TΣ−1(x− µ)]
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Discriminant Functions for Normal densities

For a c class classfification problem we have discriminant
functions g1, . . . , gc which are functions from RD to R.

In the case of Bayesian classifier we have, for i = 1, . . . , c

gi(x) = lnP (x|ωi) + lnP (ωi)

Suppose P (x|ωi) = N(µi,Σi), then

gi(x) = −1

2
(x− µi)TΣ−1(x− µi)−

d

2
ln(2π)− 1

2
ln |Σi|+ lnP (ωi)
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Discriminant Functions for Normal densities Σi = σ2I

Since features are statistically independent and each feature has
same covariance σ. Geometrically, samples fall in equal size
hyperspherical clustered centered at µi.
We have |Σi| = σ2d and Σ−1i = 1

σ2 I then

gi(x) = −||x− µi||
2

2σ2
+ lnP (ωi)

where ||x− µi||2 = (x− µi)T (x− µi)

gi(x) = − 1

2σ2
[xTx− 2µTi x+ µTi µi] + lnP (ωi)

By ignoring xTx (Since it is same for all the discriminant
functions). We get

gi(x) = ωTi x+ ωi0 which is linear

where ωi =
1

σ2
µi, ωi0 = − 1

2σ2
µTi µi + lnP (ωi)
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Discriminant Functions for Normal densities Σi = Σ

In this case we get

gi(x) = −1

2
(x− µi)TΣ−1(x− µi) + lnP (ωi)

= ωTi x+ ωi0

Where ωi = Σ−1µi, ωi0 = −1
2µ

T
i Σ−1µi + lnP (ωi)
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Discriminant Functions for Normal densities Σi = arbi-
trary

In this case we get

gi(x) = −1

2
(x− µi)TΣ−1i (x− µi)−

d

2
ln(2π)− 1

2
ln |Σi|+ lnP (ωi)

= xTΩix+ ωTi x+ ωi0

Where,

Ωi = −1

2
Σ−1i ,

ωi = Σ−1µi

ωi0 = −1

2
µTi Σ−1i µi −

1

2
ln |Σi|+ lnP (ωi)
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Summary

I Yes! Machine learning is very exiting field and it has many
applications

I Data and Models

I Machine learning workflow

I Distance based classifiers

I Bayes decision theory

References:

I Chapter 2, Pattern Classification by Duda, Hart and Stork
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