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On Learning and Different Types



What is Learning?

It is hard to precisely define the learning problem in its full
generality, thus let us consider an example:

Problem 1 Problem 2

Input

Some cat images
C = {C1, C2, . . . , Cm}

and dog images
D = {D1, D2, . . . , Dn}

An array of numbers
a = [a1, a2, . . . , an]

Objective
Identify a new image

X as cat/dog
Sort a in ascending

order

Approach ?
Follow a fixed recipe

that works in the same
way for all arrays a
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What is Learning? (contd. . . )

Cat vs Dog Sorting
Any approach with

hard-coded “rules” is bound
to fail

Hard-coded “rules” can sort
any array

Algorithm must rely on
previously observed data

Arrays sorted earlier will not
affect the sorting of a new

array
A good algorithm will get
better as more data is

observed
No such notion
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Classification of Learning Approaches

I Learn by exploring data
I Supervised Learning
I Unsupervised Learning

I Learn from data, in a more challenging circumstances
I Semi-supervised Learning
I Domain Adaptation
I Active Learning

I Learn by interacting with an environment
I Multi-armed Bandits
I Reinforcement Learning

I Very recent challenging AI paradigms
I Zero/One/Few-shot Learning
I Transfer Learning
I Multi-agent reinforcement learning
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Classification of Learning Approaches

I Supervised Learning - Separating spam from normal emails
I Unsupervised Learning - Identifying groups in a social

network

I Reinforcement Learning - Controlled medicine trials

I Zero/One/Few-shot Learning - Learning from few examples
I Transfer Learning - Multi-task learning
I Semi-supervised Learning - Using labeled and unlabeled

data
I etc.
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Supervised Learning



Regression: Example

Supervised Learning: Predicting housing prices
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Classification: Example

Supervised Learning in Action for Medical Image Diagnosis1

1
Image is taken from Erickson et al, Machine Learning for Medical Imaging, Radio Graphics,

2017
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Who supervises “Learning”?

Answer: Ground-truth or labels.

I In supervised learning along with (input data x comes with
ground-truth (or response (y)

I If y takes only two values (at most finitely many values) it
is a classification problem

I If y takes any real number it is a regression

I Aim is to build a system f (or a function) such a way that

I given x predict y as accurately as possible
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Supervised Learning

I Input: A set of labeled examples D = {(x(i), y(i))}mi=1

called the training set
I Each example (x(i), y(i)) is a pair of input representation

x(i) ∈ X ⊆ Rd and target label y(i) ∈ Y ⊆ R
I The elements of x(i) are known as features
I Objective: To learn a functional mapping fθ : X → Y

that:
I Closely mimics the examples in training set

(fθ(x(i)) ≈ y(i)), i.e., has low training error
I Generalizes to unseen examples, i.e., has low test error

I θ refers to learnable parameters of the function fθ
I Examples:

I Regression: Y = R
I Classification: Y = {1, 2, . . . k} for k class classification

problem
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Supervised Learning - Regression

I Objective: To learn a function
mapping input features x to
scalar target y

I Linear regression is the most
common form - assumes that fθ is
linear in θ

Example - Linear Regression

I Examples:
I Predicting temperature in a room based on other physical

measurements
I Predicting location of gaze using image of an eye
I Predicting remaining life expectancy of a person based on

current health records
I Predicting return on investment based on market status

1Image source: https://en.wikipedia.org/wiki/Linear_regression
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Supervised Learning - Regression (contd. . . )

Some popular techniques:

I Linear regression

I Polynomial regression

I Bayesian linear regression

I Support vector regression

I Gaussian process regression

I etc.
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Supervised Learning - Classification

I Objective: To learn a function
that maps input features x to one
of the k classes

I The classes may be (and usually
are) unordered

Example - Classification

I Examples:
I Classifying images based on objects being depicted
I Classifying market condition as favorable or unfavorable
I Classifying pixels based on membership to

object/background for segmentation
I Predicting the next word based on a sequence of observed

words
1Image source: https://www.hact.org.uk 15

https://www.hact.org.uk


Supervised Learning - Classification (contd. . . )

Some popular techniques:

I Logistic regression

I Random forests

I Bayesian logistic regression

I Support vector machines

I Gaussian process classification

I Neural networks

I etc.
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Supervised Learning Setup

Problem: Given the data {(xn, yn)}Nn=1, aim is to find a
function.

f : X → Y

that approximate the relation between X and Y.

I There are small letters, capitol letters, script letters. What
are they?

I X and Y denotes the random variables and X and Y
denotes the sets from where X and Y take values.

Random Variables? Why are we talking about probability
here?
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Supervised Learning Setup: Notation

I The number of data samples that are available to us is N

I That is the samples are (x1, y1), (x2, y2), . . . , (xN , yN )

I For example, x1, x2, . . . , xN denote medical images and,

I y1, y2, . . . , yN represent ground-truth diagnosis say −1 or
+1.

I Note that the data can be noisy

I Scanner itself may introduce this noise

I Doctors can make some mistake in their diagnosis
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Supervised Learning Setup: Dimension

I Dimension is the size of the input data i.e xn we denote this
by D

I We write xn = (xn1, . . . , xnD) ∈ RD

I If a grey scale image size is say 16× 16 then D = 16× 16

I If it is RGB then D = 16× 16× 3 and each xnd takes value
between 0 and 255.

I The dimension of x1, x2, . . . , xN is typically very high

I Why?
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Supervised Learning Setup: Dimension (Contd...)

I Number of pixels in an image 800 pixel wide, 600 pixels
high: 800× 600 = 480000. Which is 0.48 megapixels

I Typically digital images are 4− 20 megapixels

Pixels in RGB images2

I Now what is the dimension of 800× 600 image?
2
Taken from web
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Supervised Learning Setup: Dimension (Contd...)

I Note that in some applications dimension of each sample
can be varying, for example:

I sentences in text

I protein sequence data

I What about the response y?

I Dimension of y is much much less than x

I y can be structured and it leads to structure prediction
learning

I A major issue in machine learning: High dimensionality
of data
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Some Foundational aspects of
Machine Learning



On Statistical Approach to Machine Learning

Assumption behind the statistical approach to Machine
Learning:

Data is assumed to be sampled from a underlying proba-
bility distribution
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On Statistical Approach to Machine Learning (contd...)

I Suppose we are given N samples x1, . . . , xN

I Our assumption is that there is a hypothetical underlying
distribution P from which these samples are drawn

I The problem is that we do not know this distribution
I Some machine learning algorithms try to estimate this

distribution, some try to solve problems without estimating
this distribution

I Recall, class conditional densities P (x|y1) and P (x|y2)
I In the Bayes classifier uses these distributions
I We are given only data, from which we need to estimate

these distributions (How?)

23



On Statistical Approach to Machine Learning (contd...)

How complicated this underlying distribution can be?
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Loss Function

We need some guiding mechanism that will tell us how good our
predictions are given an input.

I `(y, f(x)) denotes the loss when x is mapped to f(x), while
the actual value is y.

Note

I ` and f are specific to the problems and a method.

I For example, `(.) can be a squared loss and f(x) is linear
function i.e f = wᵀx.
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Learning as an optimization

Objective

Given a loss function `, aim is to find f such that,

L(f) = E(x,y)∼P [`(Y, f(X))]

is minimum

I Here X and Y are random variables.

I L is the true loss or expected loss or Risk.

I As we mentioned before we assume that the data is
generated from a joint distribution P (X,Y ).
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Diversion: Probability Basics

I Random variable is nothing but a function that maps
outcome to a number

I Consider a coin tossing experiment: Outcomes are H and T

I Random variable X can map H to 1 and can map T to 0

I Now let us assign probabilities

I Suppose P (X = 1) = 1
4 and P (X = 0) = 3

4

I That is probability mass function of X is ( 14 ,
3
4 )

I Let us calculate expectation of a random variable

EPX =

2∑
i=1

xipi = 1

(
1

4

)
+ 0

(
3

4

)
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Empirical Risk

Problem: We cannot estimate the true loss as we do not know
P .

Some Relief: But we have some samples that are drawn from
P .

Empirical Risk

Instead of minimizing the true loss find f that minimizes
empirical risk

Lemp(f) =
1

N

N∑
n=1

`(yn, f(xn))

i.e. f∗ = argmin
f

1

N

N∑
n=1

`(yn, f(xn))
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Empirical Risk

Lemp(f) =
1

N

N∑
n=1

`(yn, f(xn))

i.e. f∗ = argmin
f

1

N

N∑
n=1

`(yn, f(xn))

I Here `(yn, f(xn)) is the per sample loss
I Lemp(f) is the overall loss given the data {(xn, yn)}Nn=1

I N is the number of samples and we need “reasonably many”
samples so that Empirical Risk is close to the True Risk

I Why do we need Empirical Risk to be closer to the True
Risk?
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Generalizing Capacity

How well the learned function work on the unseen
data?

I We want f not only work on the training data
{(xn, yn)}Nn=1 but also it should work on the unseen data.

I For this the general principle:
f should be simple

I Regularizer

f∗ = argmin
f

1

N

N∑
n=1

l(yn, f(xn)) + λR(f)

I λ controls how much regularization one needs.
I R measures complexity of f .
I This is regularized risk minimization.
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Generalizing Capacity(cont...)

I What we want to achieve.

I Small empirical error on training data, and at the same
time,

I f needs to be simple.

I There is a trade off between these two goals

I λ is a hyperparameter that tries to achieve this.
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Generalizing Capacity(cont...)

The blue curve has better generalization capacity. The orange curve overfits
the data
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Generalizing Capacity(cont...)
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Learning as the Optimization

I Note: We have the following optimization problem "find f
such that _ _ _ _ "

I Is it any f ?
I No, The choice f cannot be from a arbitrary set.
I First we fix F : the set of all possible functions that describe

relation between X and Y given training data {(xn, yn)}Nn=1

I Now our objective is

f∗ = argmin
f∈F

N∑
n=1

`(yn, f(xn)) + λR(f)

I For example, If F is set of all linear functions then we call
it linear regression.
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Linear Regression



Linear Regression: One dimensional Case

I Given N data samples of input and response pairs
I Suppose the data given to us is

(x1, y1), (x2, y2), . . . , (xN , yN )

I Further, assume that input data dimension is just 1

Problem: Find a straight line that best fits these set of points 35



Linear Regression: One dimensional Case (contd...)

Assumption: Input and response relationship is linear (We
hope so)

I {(xn, yn)}Nn=1, xn ∈ R, yn ∈ R, find a straight line that
best fits these set of points.

I (Rephrase) Given .... choose a straight line that best fits
these set of points

I i.e F is set of all linear functions.

I In this case F denotes set of all straight lines on a plane.
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Linear Regression: One dimensional Case (contd...)

From where do we choose or learn our solution from?

I Assume that F is set of all straight lines
I Further assume that F is set of all straight lines that are

passing through origin.
I Is this reasonable?
I Yes! With some preprocessing we can transform the data

I That is define F as

F = {fw(x) = wx : w ∈ R}

I F is paramerized by w

Note: Since f can be identified by w, our aim is to just learn w
from the given data
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Linear Regression: One dimensional Case (contd...)

‘Best’ with respect to what?

I We need some mechanism to evaluate our solution.

I For this we need to define a loss function

I A loss function takes two inputs: (i) response given by our
solution, and (ii) groundtruth

I Loss function ` : Y × Y → R is defined as

`(f) =

N∑
n=1

(yn − fw(xn))2

which is a least squared error.
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Linear Regression: One dimensional Case (contd...)

Recall what we are trying to do

`(fw) =

N∑
n=1

(yn − fw(xn))2

I Note that yn − fw(xn) is per sample loss

I `(fw) is the total loss

I Now aim is to find w ∈ R that minimizes empirical risk
`(fw).

Note: Remember that we supposed to minimize true risk, since
we do not know the underlying distribution we minimize
empirical risk.
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Linear Regression: One dimensional Case (cont...)

I Optimization Problem: Find
f in F that minimizes `(f)

|||
Find w ∈ R that minimizes `(w)
Since f is completely determined

by w. Linear Regression in one
dimension.
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Linear Regression: One dimensional Case (cont...)

Solution: A solution to this problem is given by
d`

dw
= 0

This can be calculated as follows. First we will calculate the
derivative of ` w.r.t w.

`(w) =

N∑
n=1

(yn − wxn)2

d`

dw
=

N∑
n=1

2(yn − wxn)(−xn)

=

N∑
n=1

(wx2n − xnyn)

=⇒
N∑
n=1

(wx2n − xnyn) = 0

=⇒ w

N∑
n=1

x2n =
N∑
n=1

xnyn

=⇒ w =

∑N
n=1 xnyn∑N
n=1 x

2
n
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Linear Regression: One dimensional Case (cont...)

Solution: A solution to this problem is given by

d`

dw
= 0

Now by equating the derivative to 0 we get

=⇒
N∑
n=1

(wx2n − xnyn) = 0

=⇒ w

N∑
n=1

x2n =

N∑
n=1

xnyn

=⇒ w =

∑N
n=1 xnyn∑N
n=1 x

2
n
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Linear Regression (General formulation)

I Given a training data D = {(xn, yn)}Nn=1, where
I xn ∈ RD is input
I yn ∈ R is response

I Model: Linear

y = fw(x) = b+

m∑
j=1

wjφj(x), where

wj : Model parameters

φj : basis function(changes the representation of x)

or

y = b+ wᵀφ(x), where

wᵀ = [w1, . . . , wm] φᵀ = [φ1, . . . , φm]
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Linear Regression (cont ...)

I Model: y = fw(x) = b+
∑m

j=1wjφj(x)

I If we set d = m and φ(x) = xi, i = 1, 2, . . . , D.

I Model: y = b+ wᵀx

I Now by using the training data

X =


x1
...
xN


N×D

Y =


y1
...
yN


N×1

We get
Y = XW + b
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Linear Regression(cont ...)

I We have

Y = XW + b
y1
...
yN

 =


x11 x12 . . . x1d

...
xN1 xN2 . . . xNd



w1

...
wd


d×1

+


b
...
b



=⇒


y1
...
yN


︸ ︷︷ ︸
N×1

Matrix

=


1 x11 x12 . . . x1d

1 x21 x22 . . . x2d
...

1 xN1 xN2 . . . xNd


︸ ︷︷ ︸

N×(d+1)
Matrix


b

w1

...
wd


︸ ︷︷ ︸
(d+1)×1
Matrix

=⇒ Y = XW
45



Linear Regression (cont...)

I We have the following problem:

Given Y =


y1
...
yN

 and X =


1 x11 x12 . . . x1d

...
1 xN1 xN2 . . . xNd



Find W =


b

w1

...
wd

 which satisfies

Y = XW

I Solving the linear system: The above system may not have
a solution i.e parameter that satisfies

yn = wᵀxn, n = 1, 2 . . . N

may not exists. 46



Least Square Approximation

I Least Square error

l(yn, w
ᵀxn) = (yn − wᵀxn)

2

I [∗] Note: One can also use

l(yn, w
ᵀxn) = |yn − wᵀxn|

which is more robust to outliers.
I The total empirical error

Lemp(w) =

N∑
x=1

l(yn, w
ᵀxn) =

N∑
n=1

(yn − wᵀxn)
2

= (Y −XW )ᵀ(Y −XW )

I

W ∗ = argmin
w

N∑
n=1

(yn − wᵀxn)
2
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Least Square Solution

I Recall Least square objective : Given data {(xn, yn)}Nn=1,
find w such that Lemp(w) =

∑N
n=1(yn − wᵀxn)

2 is
minimum.

I Solution

∂Lemp
∂w

=

N∑
n=1

2(yn − wᵀxn)
∂

∂w
(yn − wᵀxn) = 0

=⇒
N∑
n=1

xn(yn − xᵀnw) = 0 (Note: xᵀnw = wᵀxn)

=⇒
N∑
n=1

xnyn −
N∑
n=1

xnx
ᵀ
nw = 0

=⇒
N∑
n=1

xnx
ᵀ
nw =

N∑
n=1

xnyn
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Least Square Solution (Cont...)

Objective: Given data {(xn, yn)}Nn=1, find w such that
minimize

Lemp(w) =

N∑
n=1

(yn − wᵀxn)
2

Final Solution:

w = (

N∑
n=1

xnx
ᵀ
n)
−1

N∑
n=1

ynxn

= (XᵀX)−1XᵀY

When output is vector valued:

I The same solution holds if response y is vector valued i.e Y
is n×K matrix (i.e k responses per input)

I In this case W will be d×K matrix
49



Linear Regression: Least Square Solution

Some Remarks

I XᵀX is a d× d matrix(d is the dimension of the data) and
it can be very expensive to invert XᵀX

I W = [b, w1, . . . , wd], wis can become very large trying to fit
the training data.

I IMPLICATION: The model becomes very complicated.

I RESULT: The model overfits.

I SOLUTION: Penalize large values of the parameter.

I Regularization.
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Ridge Regression (Linear Regression with Regularization)

I Modified Objective: Given data {(xn, yn)}Nn=1, find w
such that

Lemp(w) =

N∑
n=1

(yn − wᵀxn)
2 + λ||w||2

I Here ||w||2 = wᵀw

I λ is the hyperparameter, that controls amount of
regularization.

I Solution:

∂L(W )

∂w
=

N∑
n=1

2(yn − wᵀxn)(−xn) + 2λw = 0
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Ridge Regression(cont...

=⇒ λ(w) =

N∑
n=1

xn(yn − xᵀnw)

=⇒ λ(w) =

N∑
n=1

xnyn −
N∑
n=1

xnx
ᵀ
nw

=⇒ λW = XᵀY −XᵀXW

=⇒ λW +XᵀXW = XᵀY

=⇒ (λId +XᵀX)W = XᵀY

=⇒W = (XᵀX + λId)
−1XᵀY

Note: XᵀX is a d× d matrix
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On Regularization

Claim: Small weights, w = (w1, . . . , wd) ensure that the
function y = f(x) = wᵀx is smooth.

Justification:

I Let xn, xm ∈ Rd such that

xnj = xmj , j = 1, 2, . . . , d− 1 but |xnd
− xmd

| = ε

I Now |yn − ym| = εwd

I If wd is large then |yn − ym| is large.

I This implies in this case f(x) = wᵀx does not behave
smoothly.
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On Regularization (cont...)

I Hence regularization helps: which makes the individual
components of w small.

I That is, Do not learn a model that gives a simple feature
too much importance

I Regularization is very important when N is small and D is
very large.
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Ridge Regression Solution

I Directly with matrices

L(w) =
1

2
(Y −XW )ᵀ(Y −XW ) +

λ

2
W ᵀW

OL(w) = −Xᵀ(Y −XW ) + λW = 0

=⇒ XᵀXW + λW = XᵀY

=⇒ (XᵀX + λI)W = XᵀY

Hence W ∗ = (XᵀX + λI)−1XᵀY

I One more advantage of Regression:

I If XᵀX is not invertible, one can make (XᵀX + λId)

invertible.

55



Gradient Descent Solution for Least Squares

I We have the following least square solution

W ∗ = (XᵀX)−1XᵀY

W ∗reg = (XᵀX + λId)
−1XᵀY

I Which involves inverting a d× d matrix.

I In the case of high dimensional data it is prohibitively
difficult.

I Hence we turn to gradient Descent Solution.

I Optimization methods that is based on gradients.

I May stuck in a local optima.

56



Gradient Descent Procedure

Procedure:

1 Start with an initial value w = w(0)

2 Update w by moving along the gradient of the loss function
L(Lemp or Lreg)

w(t) = w(t−1) − η ∂L
∂w

∣∣∣
w=w(t−1)

3 Repeat until convergence.
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Gradient Descent Procedure (contd...)

We have
∂L

∂w
=

N∑
n=1

xn(yn − xᵀnw)

Procedure:

1 Start with an initial value w = w(0)

2 Update w by moving along the gradient of the loss function
L(Lemp or Lreg)

w(t) = w(t−1) − η
N∑
n=1

xn(yn − xᵀnw(t−1))

3 Repeat until convergence.
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On Convexity

I The squared loss function in linear regression is convex.

I With `2 regularizer it is strictly convex.

Convex Functions:

For scalar functions : Convex if the second derivative is
nonnegative everywhere

For vector valued : Convex if Hessian is positive
semi definite
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On `1 Regularizer

`1 regularizer R(w) = ||w||1 =
∑d

j=1 |wj |

I Promotes w to have very few non zero components.

I Optimization in this case is not straight forward.
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