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Probabilistic View of Linear
Regression



Maximum Likelihood Estimation

I Let X = x1, x2, . . . , xN , where xn ∈ Rd be some data that
is generated from xn ∼ P (x|θ)

I Recall: In the statistical approach to machine learning, we
assume that there is an underlying probability distribution
from which the data is sampled.

I Hence θ denotes the parameters of the distribution.

I For example xn ∼ N (x|µ, σ). That is θ = (µ, σ).

I Assumption: The data in X is generated i.i.d.
(independent and identically distributed). This is very
important assumption and we see this very often.

I Aim: Learn θ given the data X = x1, x2, . . . , xN .
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Diversion: Some Probability

I We say two random variables X, Y are identical that
means that their probability distributions are the same

I If two Gaussian random variables are same only if their
means and variance (covariance matrices) are same.

I We say two random variables X, Y are independent if

P (X,Y ) = P (X)P (Y )

4



Maximum Likelihood Estimation (contd. . . )

I Given X = x1, x2, . . . , xN , and xn ∼ P (x|θ)
I Learn P so that likelihood of x1, x2, . . . , xN are sampled

from P is maximum.
I Equivalently learn or estimate θ so that likelihood of
x1, x2, . . . , xN are sampled from P is maximum.

I By the iid assumption

P (X|θ) = P (x1, x2, . . . , xN |θ)

=

N∏
n=1

P (xn|θ)

I P (X|θ) is the likelihood.
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Maximum Likelihood Estimation (contd. . . )

How do we estimate θ given the data X.

⇓

Find value of θ that makes observed data most probable.

⇓

Find θ that maximizes likelihood function

L = logP (X|θ) =

N∑
n=1

logP (xn|θ)
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Maximum Likelihood Estimation (contd. . . )

θ∗MLE = arg max
θ

L(θ) = arg max
θ

N∑
n=1

logP (xn|θ)
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Maximum Likelihood Estimation (contd. . . )

Example:

Suppose Xn is a binary random variable. Suppose it follows
Bernoulli distribution
i.e. P (x|θ) = θx(1− θ)1−x

L(θ) =

N∑
n=1

logP (xn|θ) =

N∑
n=1

xn log θ + (1− xn) log(1− θ)

∂L(θ)

∂θ
=

1

θ

N∑
n=1

xn +
1

1− θ

N∑
n=1

(1− xn)

=
1

θ

N∑
n=1

xn +
1

1− θ
(N −

N∑
n=1

xn)
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Maximum Likelihood Estimation (contd. . . )

=⇒ θ∗MLE =

∑N
n=1 xn
N

[ In a coin tossing experiment, it is just a fraction of heads ]
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Maximum a Posteriori Estimate

I We will have a prior on parameter θ i.e. P (θ)

Yes θ is no more a mere number, it is a Random Variable.
I One can have knowledge on θ
I It acts as a regularizer (We will see later)

I Bayes Rule:

P (θ|X) =
P (X|θ)P (θ)

P (X)

P (θ|X) : Posterior

P (X|θ) : Likelihood

P (θ) : Prior

P (X) : Evidence
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Maximum a Posteriori Estimate (contd. . . )

Bayes Rule:

P (θ|X) =
P (X|θ)P (θ)

P (X)
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Maximum a Posteriori Estimate (contd. . . )

MAP Estimate

θ∗MAP = arg max
θ

P (θ|x)

= arg max
θ

logP (x|θ) + logP (θ)

= arg max
θ

N∑
n=1

logP (xn|θ) + logP (θ)

Note: When P (θ) is a uniform distribution, it reduces to MLE.
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Linear Regression : Probabilistic Setting

I Each response is generated by a linear model + Gaussian
noise

Y = W TX + E

I That is, given N training samples {(xn, yn)Nn=1} i.i.d.
xn ∈ Rd and yn ∈ R

I εn ∼ N (0, σ2)

I yn ∼ N (wTxn, σ
2)

=⇒ P (Y |X,W ) = N (y|wTx, σ2)

=
1

σ
√

2π
exp
(
−(y − wTx)2

2σ2
)
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Linear Regression : ML Estimation

Log Likelihood

logL(w) = logP (D|w) = logP (y|X,W )

= log

N∏
n=1

P (yn|xn, w)

=

N∑
n=1

logP (yn|xn, w)

=

N∑
n=1

[
−1

2
log(2πσ2)− (yn − wTxn)2

2σ2

]
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Linear Regression : ML Estimation (contd. . . )

W ∗
MLE = arg max

w
− 1

2σ2

N∑
n=1

(yn − wTxn)2

= arg min
w

1

2σ2

N∑
n=1

(yn − wTxn)2

i.e. ML Estimation in the case of Gaussian environment ≡ Least
square objective for regression
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Linear Regression : MAP Estimate

I Here we introduce prior on the parameter w.
⇒ This will lead to regularization of model.

I Remember we treat parameters as Random Variables in
MAP.

I P(w) = N (w| 0︸︷︷︸
Mean

, λ−1I︸ ︷︷ ︸
Variance

)

I We have multivariate Gaussian

N (x : µ,Σ) =
1√

(2π)D|Σ|
exp
(
−1

2
(x− µ)TΣ−1(X − µ)

)
=

1√
(2π)

D
2 ( 1

λ)
D
2

exp
(
−λ

2
wTw

)
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Linear Regression : MAP Estimate (contd. . . )

I log posterior probability

log(w|D) = log
P (D|w)P (w)

P (D)

= logP (w) + logP (w|D)− logP (D)

I

W ∗
MAP = arg max

w
logP (w|D)

= arg max
w

{
logP (w) + logP (D|w) + logP (D)

}
= arg max

w

{
logP (w) + logP (D|w)

}
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Linear Regression : MAP Estimate (contd. . . )

W ∗
MAP = arg max

w
logP (w|D)

= arg max
w

[
−D

2
log 2π − λ

2
wTw

+

N∑
n=1

(
−1

2
log(2πσ2)− (xn − wTxn)2

2σ2
)]

= arg max
w

1

2σ2

N∑
n=1

(yn − wTxn)2 +
λ

2
wTw

MAP estimate in the case of Gaussian environment ≡ Least
square objective with L2 regularization.
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MLE vs MAP

MAP estimate shrinks the estimate of w towards the prior.
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Logistic Regression



Problem Set Up

I Two class classification

I Instead of the exact labels estimate the probabilities of the
labels.

I i.e predict

P (yn = 1|xn, w) = µn

P (yn = 0|xn, w) = 1− µn
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The Logistic Regression Model

µn = f(xn) = σ(wᵀxn) =
1

1 + exp(−wᵀxn)
=

exp(wᵀxn)

1 + exp(wᵀxn)

I Here σ is the sigmoid or logistic function.
I The model first computes a real-values score.

wᵀx =

d∑
i=1

wixi

and non-linearly squashes it between (0, 1) to turn this
into a probability.

wᵀx

µ

0

- 1

Logistic Regression: Sigmoid function
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The Decision Boundary

If wᵀx > 0 =⇒ P (yn = 1|xn, w) > P (yn = 0|xn, w)

wᵀx < 0 =⇒ P (yn = 1|xn, w) < P (yn = 0|xn, w)

w

wᵀx = 0

Logistic Regression: Decision Boundary
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Loss Function Optimization

I Squared Loss

`(yn, f(xn) = (yn − f(xn))2

= (yn − σ(wᵀxn))2

I This is non-convex and not easy to optimize.

I Cross Entropy loss

`(yn, f(xn)) =

− log(µn) when yn = 1

− log(1− µn) when yn = 0

=

−P (yn = 1|xn, wn) when yn = 1

−P (yn = 0|xn, wn) when yn = 0
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Cross Entropy loss

l(yn, f(xn)) = −yn log(µn)− (1− yn) log(1− µn)

= −yn log(σ(wᵀxn))− (1− yn) log(1− σ(wᵀxn))

I Cross Entropy Loss over entire data.

L(w) =

N∑
n=1

l(yn, f(xn))

=

N∑
n=1

[−yn log(µn)− (1− yn) log(1− µn)]

= −
N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn)]
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Cross Entropy loss

I By adding L2 regularizer.

L(w) = −
N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn)) + λ||w||2
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Logistic Regression: MLE formulation

I AIM Learn w from the data that can predict the
probability of xn belong to 0 or 1.

I Log Likelihood: Given D = {(x1, y1), . . . , (xN , yN )}

logL(w) = logP (D|w)

= logP (Y |X,w)

= log

N∏
n=1

P (yn|xn, w)

= log

N∏
n=1

µynn (1− µn)1−yn

I ∵ Y is a Bernoulli random variable

P (yn = 1|xn, w) = µn

P (yn = 0|xn, w) = 1− µn
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Logistic Regression: MLE formulation(contd...)

P (Y |X,w) =

N∑
n=1

[yn logµn + (1− yn) log(1− µn)]

We have µn =
exp(wᵀxn)

1 + exp(wᵀxn)

=⇒ L(w) =

N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn)]

Which is same as the cross entropy loss minimization.
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Logistic Regression: MAP estimate

I MAP → We assume a prior distribution on the weight
vector w. That is

P (w) = N(w|0), λ−1I)

=
1

(2π)
D
2

exp

(
− λ

2
wᵀw

)
I Note: Multivariate Gaussian is defined as

P (w) =
1√

(2π)D|Σ|
exp

[
− 1

2
(X − µ)ᵀΣ−1(X − µ)

]
I Then MAP estimate is

W ∗
MAP = arg max

w
logP (W |D)
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Logistic Regression: MAP estimate (cont...)

I We have

W ∗
MAP = arg max

w
logP (W |θ)

= arg max
w

logP (D|w) + logP (w)

= arg max
w

[
− D

2
log 2π − λ

2
wᵀw

−
N∑
n=1

log(1 + exp(−ynwᵀxn))

]

= arg max
w

N∑
n=1

log

[
1 + exp(−ynwᵀxn)

]
+
λ

2
wᵀw

Which is same as the minimizing regularized cross entropy
loss.
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Logistic Regression: Some Comments

I Objective function of Logistic Regression is same as SVMs
except for the loss function.

Logistic Regression→ log loss

SVM → hinge loss

I Logistic regression can be extended to multiclass case: just
use softmax function.

P (Y = k|w, x) =
exp(wᵀ

kx)∑
k exp(wᵀ

kx)
k = 1, 2, . . . ,K classes
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Optimization is the Key

I Almost all problems in machine learning leads to
optimization problems

I The following two factors decides the fate of any method:

I What kind of optimization problem that we are led to

I What are all optimization methods that are available to us

I There are several methods that are available for
optimization, among these gradient descent methods are
most popular
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Gradient Descent methods are Used in ....

I Linear Regression

I Logistic Regression

I It is just classification, but instead of labels it gives us class
probability

I Support Vector Machines

I Neural Networks

I The backbone of neural networks is Back-propagation
algorithm
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Example of an objective

I Most often, we do not even
have functional form of the
objective.

I Given x, we can only
compute f(x)

I Sometime this may involve
a simulating a system

I Computing each f(x) can
be time consuming

I This becomes even more difficult as x is a D-dimensional
vector and D is very large
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Multivariate Functions

(a) f(x, y) = x2 + y2 (b) f(x, y) = −x2 + y2

(c) f(x, y) = cos2(x) + y2 (d) f(x, y) = cos2(x) + cos2(y)
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Partial Derivatives

(a) Surface given by
f(x, y) = 9− x

2
− y

2

(b) Plane y = 1

(c) f(x, 1) = 8− x
2

denotes a
curve, and f ′(x) = −2x denotes
derivative (or slope) of that
curve
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Partial Derivatives (contd. . . )
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Idea of Gradient Descent Algorithm

I Start at some random point (of course final results will
depend on this)

I Take steps based on the gradient vector of the current
position till convergence

I Gradient vector give us direction and rate of fastest increase
any any point

I Any point x if the gradient is nonzero, then the direction of
gradient is the direction in which the function most quickly
from x

I The magnitude of gradient is the rate of increase in that
direction
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Idea of Gradient Descent Algorithm1

1Credits for all the images in this sections goes to Michailidis and Maiden
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Gradient Descent

I AIM: To minimize the function

L(w) =

N∑
n=1

[
ynw

ᵀxn − log(1 + exp(wᵀxn)
]

I We do this by calculating the derivative of L w.r.t w.

I Note: Since log function is concave in w, this has a unique
minimum.
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Gradient Descent

I AIM: To minimize the function

L(w) =

N∑
n=1

[
ynw

ᵀxn − log(1 + exp(wᵀxn)
]

I Gradient:

∂L

∂w
= −

N∑
n=1

[
ynxn −

exp(wᵀxn)

1 + exp(wᵀxn)
xn

]

= −
N∑
n=1

(yn − µn)xn = X−1(µ− y)

where µ =


µ1
...
µN

 Y =


y1
...
yN

 and X =


x1
...
xN


N×D
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Gradient Descent (contd...)

I Since there is no closed form solution, we take a recourse to
iterative methods like gradient descent.

I Gradient Descent:

1 Initialize w(1) ∈ RD randomly.

2 Iterate until the convergence.

w(t+1) = w(t) − η
N∑

n=1

(
µ(t)
n − yn

)
xn︸ ︷︷ ︸

Gradient at
previous value

I µ
(t)
n = σ(w(t)ᵀxn)

I η is the learning rate.
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Gradient Descent (contd...)

I We have the following update

w(t+1) = w(t) − η
N∑
n=1

(µ(t)n − yn)xn︸ ︷︷ ︸
Gradient at previous value

I Note: Calculating gradient in each iteration requires all the
data. When N is large this may not be feasible.

I Stochastic Gradient Descent: Use mini-batches to compute
the gradient.
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Gradient Descent: Some Remarks

Note on Learning Rate:

I Sometimes choosing the learning rate is difficult
I Larger learning rate → Too much fluctuation.
I Smaller learning rate → Slow convergence

To deal with this problem:

I Choose optimal step size at each iteration ηt using line
search.

I Add momentum to the update.

w(t+1) = w(t) − η(t)g(t) + αt

(
w(t) − w(t−1)

)
I Use second order methods like Newton method to exploit

the curvature of the loss function. (But we need to compute
Hessian matrix.)
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Multiclass Logistic or Softmax Regression

I Logistic regression can be extend for the multiclass case.

I Let yn ∈ {0, 1, . . . , k − 1}

I Define

P (yn = k|xn,W ) =
exp(wᵀ

kxn)∑K
l=1 exp(wᵀ

kxnl
)

= µnk

∗ µnK : Probability that nth sample belongs to
kth class and

∑k
l=1 µnl

= 1

I Softmax: Class k with largest wᵀ
kxn dominates the

probability.
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Multiclass Logistic or Softmax Regression

I P (yn = k|xn,W ) =
exp(wᵀ

kxn)∑K
l=1 exp(w

ᵀ
kxn)

I W = [w1w2 . . . wk]D×K

I We can think of yn are drawn from multimodal distribution

P (y|X,W ) =

N∏
n=1

K∏
l=1

µ
ynl
nl : Likelihood function

I where ynl = 1 if true class of example n is l and ynl = 0 for
all other l.
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Hyperplane based classifiers and
Perceptron



Linear as Optimization

Supervised Learning Problem

I Given data {(xn, yn)}Nn=1 find f : X → Y that best
approximates the relation between X and Y .

I Determine f such a way that loss l(y, f(x)) is minimum.

I f and l are specific to the problem and the method that we
choose.
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Linear Regression

I Data: {(xn, yn)}Nn=1
I xn ∈ RD is a D dimensional input
I yn ∈ R is the output

Aim is to find a hyperplane that fits best these points.
I Here hyperplane is a model of choice i.e.,

f(x) =

D∑
j=1

xjwj + b = wᵀx+ b

I Here w1, . . . , wd and b are model parameters
I Best is determined by some loss function

Loss(w) =

N∑
n=1

[yn − f(xn)]2

I Aim : Determine the model parameters that minimize the
loss. 47



Logistic Regression

Problem Set-Up

I Two class classification

I Instead of the exact labels estimate the probabilities of the
labels i.e.

Predict P (yn = 1|xn, w) = µn

P (yn = 0|xn, w) = 1− µn

I Here (xn, yn) is the input output pair.
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Logistic Regression(Contd...)

Problem

Find a function f such that,

µ = f(xn)

Model

µn = f(xn) = σ(wᵀxn) =
1

1 + exp(−wᵀxn)

=
exp(wᵀxn)

1 + exp(wᵀxn)
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Logistic Regression(Contd...)

Sigmoid Function

I Here σ(.) is the sigmoid function.

I The model first computes a real valued score
wᵀx =

∑D
i=1wixi and then nonlinearly “squashes” it

between (0,1) to turn into a probability.
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Logistic Regression(contd...)

Loss Function: Here we use cross entropy loss instead of
squared loss.

Cross entropy loss is defined as:

L(yn, f(xn)) =

− log(µn) when yn = 1

− log(1− µn) when yn = 0

= −yn log(µn)− (1− yn) log(1− µn)

= −yn log(σ(wᵀxn))− (1− yn) log(1− σ(wᵀxn))

And now empirical risk is

L(w) = −
N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn))]
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Logistic Regression(contd...)

By taking the derivative w.r.t w

∂L

∂w
=

N∑
n=1

(µn − yn)xn

I Here the Gradient Descent Algorithm is
1 Initialize w(1) ∈ RD randomly
2 Iterate until the convergence

w(t+1)︸ ︷︷ ︸
New learned
parameter or

weights

= w(t)︸︷︷︸
previous

value

− η︸︷︷︸
Learning

rate

N∑
n=1

(µ(t)
n − yn)xn︸ ︷︷ ︸
Gradient at

previous value

I Note: Here µ(t) = σ(w(t)ᵀxn)
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Logistic Regression (contd. . . )

Let us take a look at the update equation again

w(t+1)︸ ︷︷ ︸
New learned
parameter or

weights

= w(t)︸︷︷︸
previous

value

− η︸︷︷︸
Learning

rate

N∑
n=1

(µ(t)n − yn)xn︸ ︷︷ ︸
Gradient at

previous value

What do we notice here?

Problem: Calculating gradient in each iteration requires all the
data. When N is large this may not be feasible.
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Stochastic Gradient Descent

I Strategy: Approximate gradient using randomly chosen
data point (xn, yn)

w(t+1) = w(t) − ηt(µ(t)n − yn)xn

.

I Also: Replace predicted label probability µ(t)n by predicted
binary label ŷ(t)n , where

ŷ(t)n =

1 if µ(t)n > 0.5 or w(t)ᵀxn > 0

0 if µ(t)n < 0.5 or w(t)ᵀxn < 0
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Stochastic Gradient Descent (contd. . . )

I Hence: Update rule becomes

w(t+1) = w(t) − ηt(ŷ(t)n − yn)xn

I This is mistake driven update rule

I w(t) gets updated only when there is a misclassification i.e.
ŷ
(t)
n 6= yn

55



Stochastic Gradient Descent (contd. . . )

We will do one more simple change:

I Change: the class labels to {-1,+1}

=⇒ ŷ(t)n − yn =

−2yn if ŷ
(t)
n 6= y

(t)
n

0 if ŷ
(t)
n = y

(t)
n

I Hence: Whenever there is a misclassification.

w(t+1) = w(t) − 2η(t)ynxn

I =⇒ This is a perceptron learning algorithm which is a
hyperplane based learning algorithm.
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Hyperplanes

I Separates a d-dimensional space into two half
spaces(positive and negative)

I Equation of the hyperplane is

wᵀx = 0

I By adding bias b ∈ R
wᵀx+ b = 0 b > 0 moving the

hyperplane parallely along w
b < 0 opposite direction
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Hyperplane based classification

I Classification rule

y = sign(wᵀx+ b)

I

wᵀx+ b > 0 =⇒ y = +1

wᵀx+ b < 0 =⇒ y = −1
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Hyperplane based classification
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The Perceptron Algorithm (Rosenblatt, 1958)

I Aim is to learn a linear hyperplane to separate two classes.

I Mistake drives online learning algorithm

I Guaranteed to find a separating hyperplane if data is
linearly separable.
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Perceptron Algorithm

I Given training data D = {(x1, y1), ..., (xn, yn)}

I Initialize wold = [0, ..., 0], bold = 0

I Repeat until convergence.

I For a random (xn, yn) ∈ D

I If yn(wᵀxn + b) ≤ 0

[Or sign(wᵀx+ b) 6= yn i.e mistake mode]

I wnew = wold + ynxn

I bnew = bold + yn
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Perceptron Convergence Theorem (Block and Novikoff)

"Roughly" : If the data is linearly separable perceptron
algorithm converges.
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What if the data is not linearly separable?

Yes! In practice, most often the data is not linearly separable.
Then

I Make linearly separable using kernel methods.

I (Or) Use multilayer perceptron.

What are all these?

I The first leads to Support Vector Machines, that rules
machine learning for decades

I The second one leads to Deep Learning!
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What we learned?

I Maximum Likelihood Estimates

I Bayes again! MAP

I Probabilistic view of Linear and Logistic Regression

I Hyperplanes and Perceptrons

I The two very big paradigms in ML
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