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Probabilistic View of Linear
Regression




Maximum Likelihood Estimation

» Let X =21, 29,...,2N, where x, € R? be some data that
is generated from z,, ~ P(z|0)

» Recall: In the statistical approach to machine learning, we
assume that there is an underlying probability distribution
from which the data is sampled.

» Hence 6 denotes the parameters of the distribution.
» For example z,, ~ N (x|u, o). That is 0 = (p, 0).
» Assumption: The data in X is generated i.i.d.

(independent and identically distributed). This is very
important assumption and we see this very often.

» Aim: Learn 6 given the data X = x1,z9,...,2xN.



Diversion: Some Probability

» We say two random variables X, Y are identical that
means that their probability distributions are the same

» If two Gaussian random variables are same only if their
means and variance (covariance matrices) are same.

» We say two random variables X, Y are independent if

P(X,Y) = P(X)P(Y)



Maximum Likelihood Estimation (contd...)

» Given X = x1,x9,...,2N, and x,, ~ P(z|0)
» Learn P so that likelihood of x1, s, ...,z Ny are sampled
from P is maximum.
» Equivalently learn or estimate 6 so that likelihood of

T1,Ts,...,rN are sampled from P is maximum.
» By the iid assumption

P(X|0) = P(x1,22,...,2N(0)

N
H P(x,|0)
n=1

P(x|6)

P(X]6) is the likelihood.




Maximum Likelihood Estimation (contd...)

How do we estimate @ given the data X.

4

Find value of 6 that makes observed data most probable.

4

Find 6 that maximizes likelihood function

L =log P(X|0) = ZlogP:vnW



Maximum Likelihood Estimation (contd...)

N
Oy = argmax L£(0) = arg maxz log P(x,|0)
0 0

n=1

L(8)

BMLE g



Maximum Likelihood Estimation (contd...)

Example:

Suppose X, is a binary random variable. Suppose it follows
Bernoulli distribution
ie. P(x|f) =6%(1—0)-*

ZlogP xn|0) = Z:}:nlogG—i—(l — xp) log(1l —0)

n=1

0L(0) 1
WZ@Z% 1_921‘“”
Qan N an



Maximum Likelihood Estimation (contd...)

[ In a coin tossing experiment, it is just a fraction of heads |



Maximum a Posteriori Estimate

» We will have a prior on parameter 6 i.e. P(0)
Yes 6 is no more a mere number, it is a Random Variable.

» One can have knowledge on 6

» It acts as a regularizer (We will see later)

» Bayes Rule:

_ PX10)P(9)
PO|X) = PX)
P(0|X) : Posterior
P(X]10) : Likelihood
P(0) : Prior
P(X) : Evidence
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Maximum a Posteriori Estimate (contd...)

Bayes Rule:
P(X1]6)P(6)

POIX) = =5

P(6) P@y) PQy|6)
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Maximum a Posteriori Estimate (contd...)

MAP Estimate

03 4p = argmax P(0|z)
0

= arg max log P(x|0) + log P(6)
0

N
= arg max Z log P(x,|0) + log P(0)
0

n=1

Note: When P(0) is a uniform distribution, it reduces to MLE.
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Linear Regression : Probabilistic Setting

» Each response is generated by a linear model + Gaussian

noise

Y=WIX+E

» That is, given N training samples {(zy, )} i.i.d.
xneRdandynER
> ¢, ~ N(0,07)

> Y ~ N(wlz,,0?)

= PY|X, W)= N(y\wTrx, 02)

—wlr)2
1 (y ) )

= exp(—
oV 21 p( 202
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Linear Regression : ML Estimation

Log Likelihood

log L(w) = log P(D|w) = log P(y| X, W)
N
=log [ [ P(ynlzn, w)

n=1

N
ZlogP Yn | T, w)

T

"y
3 [_log (2m0?) — W — W an)”

202

—_

n=

14



Linear Regression : ML Estimation (contd...)

N

1
* T, \2
WyLp = arg max —5 (Yyn — W™ xy)
w n=1
)2
= aurgmln—2 E —wlzy,)
w 20

i.e. ML Estimation in the case of Gaussian environment =

square objective for regression

Least
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Linear Regression : MAP Estimate

» Here we introduce prior on the parameter w.
= This will lead to regularization of model.

» Remember we treat parameters as Random Variables in
MAP.

> P(w) = N( )

wl 0 A7

MeanVariance

» We have multivariate Gaussian

Na: %) = (2;)17‘2, p(— (o — )" S X — )
1
= = Dexp(——wTw)
em3(hz 7
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Linear Regression : MAP Estimate (contd...)

» log posterior probability

P(Dlw)P(w)
P(D)
= log P(w) + log P(w|D) — log P(D)

log(w|D) = log

Wirap = arg maxlog P(w|D)
= arg max{log P(w) + log P(D|w) + log P(D) }

= arg max{log P(w) + log P(D|w)}
w

17



Linear Regression : MAP Estimate (contd...)

Wirap = arg maxlog P(w|D)
w

A
= arg max[—— log 21 — Z—wlw
w 2 2
N
1 9 (2, —wlz,)?
+ Z(_i log(2mo®) — e )]
n=1
al A
= arg max Z —w? Tn) 2 4 §wTw

=1

MAP estimate in the case of Gaussian environment = Least
square objective with Lo regularization.
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MLE vs MAP

. * *
Prior Mean WMAP WM,E

MAP estimate shrinks the estimate of w towards the prior.
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Logistic Regression




Problem Set Up

» Two class classification

» Instead of the exact labels estimate the probabilities of the
labels.

> ie predict

P(yn = zn, w) = py
P(yn - 0|xn7w) =1—pp

20



The Logistic Regression Model

1 _exp(wTazy,)
1 +exp(—wTx,) 1+ exp(wTz,)

Hn = f(-rn) = U(wan) =

» Here o is the sigmoid or logistic function.
» The model first computes a real-values score.

d
wle = E Wi T4
Al 2

i=1

and non-linearly squashes it between (0, 1) to turn this

into a probability.

21
0 wlx



The Decision Boundary

fwle >0 = Py, = l|zp, w) > P(yn = 0]z, w)
wle <0 = Py, = 1|z, w) < P(yn = 0|2, w)

Logistic Regression: Decision Boundary
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Loss Function Optimization

> Squared Loss
(Y, f(2n) = (yn — f(xn))2
= (yn — o(wTzy))?
» This is non-convex and not easy to optimize.

» Cross Entropy loss

—log(tn) when y,, = 1

¢ n n)) —
(¥, F(&n) —log(1l — p) when y, =0

—P(yp = 1|z, wy,) when y, =1
_P(yn = 0‘$TL1 wn) when y, =0

23



Cross Entropy loss

UYn, f(zn)) = —ynlog(pn) — (1 — yn) log(1 — pin)
= ~Yn log(o(wan)) - (1 - yn) log(l - U(men))

» Cross Entropy Loss over entire data.

N
L(w) - Zl(ym f( n))

N
Z —ynlog(pn) — (1 = yn)log(1 — p1)]

n=1

N
Z YynwTx, — log(l + exp(wTz,)]
n=1
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Cross Entropy loss

» By adding Lo regularizer.

N
L(w) = =Y [ynw s — log(1 + exp(wTzy)) + Allwl[?

n=1
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Logistic Regression: MLE formulation

» AIM Learn w from the data that can predict the
probability of x,, belong to 0 or 1.
» Log Likelihood: Given D = {(z1,v1),...,(zNn,yN)}
log L(w) = log P(D|w)
=log P(Y|X,w)

N
= log H P(yn|xnaw)

n=1
N
= log [ s (1 = )~
n=1
» -~ Y is a Bernoulli random variable
P(yn = 1|l‘n7w) = HUn

P(yn = 0|$naw) =1—pn 26



Logistic Regression: MLE formulation(contd...)

N
P(Y|X,w) = [ynlog ptn + (1 — yn)log(1 — p1n,)]
n=1
exp(wT )
We h =
¢ Have Hn =7 exp(wTzy,)
N
= L(w) = Z[yana:n —log(1 + exp(wTzy,)]
n=1

Which is same as the cross entropy loss minimization.
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Logistic Regression: MAP estimate

» MAP — We assume a prior distribution on the weight
vector w. That is

P(w) = N(w|0),A7'1)

1 A
s

» Note: Multivariate Gaussian is defined as

SRS SR I D
Pl) = e |~ 500 e (X )

» Then MAP estimate is

Wirap = arg max log P(W|D)
w

28



Logistic Regression: MAP estimate (cont...)

» We have
Wirap = arg maxlog P(W10)

= argmax log P(D|w) + log P(w)
w

= argmax | — — log 27 — —wTw
g { 5 log 5

N
—) log(1+ exp(—yan:cn))}
n=1

al A
arg maxz log [1 + exp(—yanmn)} + §wTw

w

n=1
Which is same as the minimizing regularized cross entropy
loss.
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Logistic Regression: Some Comments

» Objective function of Logistic Regression is same as SVMs

except for the loss function.

Logistic Regression — log loss
SVM — hinge loss

» Logistic regression can be extended to multiclass case: just

use softmax function.

exp(w}.x)

POC= ko 2) = o ptula)

k=1,2,..., K classes
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Optimization is the Key

» Almost all problems in machine learning leads to

optimization problems
» The following two factors decides the fate of any method:
» What kind of optimization problem that we are led to

» What are all optimization methods that are available to us

» There are several methods that are available for
optimization, among these gradient descent methods are
most popular

31



Gradient Descent methods are Used in ....

v

Linear Regression

v

Logistic Regression

» It is just classification, but instead of labels it gives us class
probability

v

Support Vector Machines

Neural Networks

v

» The backbone of neural networks is Back-propagation
algorithm

32



Example of an objective

» Most often, we do not even
have functional form of the

Objective s global maximum
’ local maximum

» Given x, we can only

compute f(x) 0 >\>/\

» Sometime this may involve local minimum

. . -4 - 1
a simulating a system global minimum

—6 ! ! ! ! !

» Computing each f(z) can
. i 0 0.2 0.4 06 08 1 12
be time consuming

» This becomes even more difficult as z is a D-dimensional

vector and D is very large

33



Multivariate Functions

() f(z,y) = cos?(x) +y°

(d) f(z,y) = cos®(z) + cos®(y)

34



Partial Derivatives

Wnsntigen

(a) Surface given by
(b) Planey =1

(c) f(z,1) =8 — 5 denotes a

curve, and f'(xz) = —2x denotes
derivative (or slope) of that
curve

35



Partial Derivatives (contd...)

. of
Line has slope a(a, b)

Graph of f(x,b)

36



Idea of Gradient Descent Algorithm

» Start at some random point (of course final results will

depend on this)

» Take steps based on the gradient vector of the current
position till convergence

» Gradient vector give us direction and rate of fastest increase
any any point

» Any point x if the gradient is nonzero, then the direction of
gradient is the direction in which the function most quickly
from x

» The magnitude of gradient is the rate of increase in that
direction

37



Idea of Gradient Descent Algorithm!

i ‘
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T Credits for all the images in this sections goes to Michailidis and Maiden



Gradient Descent

» AIM: To minimize the function

N
L(w) = Z [yanxn — log(1 + exp(wTzy,)

n=1
» We do this by calculating the derivative of L w.r.t w.

» Note: Since log function is concave in w, this has a unique

minimum.
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Gradient Descent

» AIM: To minimize the function
N

L(w) = Z [yanmn — log(1 + exp(wan)}
n=1
» Gradient:
N
oL exp(wTxy)

N

==Y (W —p)an =X —y)
n=1

H1 Y1 T

where p = | Y=1: and X =
KN YN TN

NxD

40



Gradient Descent (contd...)

» Since there is no closed form solution, we take a recourse to
iterative methods like gradient descent.

» Gradient Descent:

Initialize w® € RP randomly.

Iterate until the convergence.

N
WD = w® =y 3™ (40— yo )2
n=1

Gradient at
previous value

> p,,gf) — U(w(t)Tmn)

» 1 is the learning rate.

41



Gradient Descent (contd...)

» We have the following update

N
WD = w® — 5 3 () — gl

n=1

Gradient at previous value

» Note: Calculating gradient in each iteration requires all the
data. When N is large this may not be feasible.

» Stochastic Gradient Descent: Use mini-batches to compute
the gradient.

42



Gradient Descent: Some Remarks

Note on Learning Rate:

» Sometimes choosing the learning rate is difficult
» Larger learning rate — Too much fluctuation.
» Smaller learning rate — Slow convergence

To deal with this problem:

» Choose optimal step size at each iteration 7; using line
search.
» Add momentum to the update.

w) = w® — e g® 4 o (wm _ w(H))

» Use second order methods like Newton method to exploit
the curvature of the loss function. (But we need to compute

Hessian matrix.)

43



Multiclass Logistic or Softmax Regression

» Logistic regression can be extend for the multiclass case.
» Let y, € {0,1,...,k—1}
> Define
exp(w]zn)
S exp(wlay,)

fr— :unk

P(yn = k|xn7W) =

% ln,: Probability that n' sample belongs to
kt" class and Zle fn, =1

» Softmax: Class k with largest w,l:z:n dominates the
probability.

44



Multiclass Logistic or Softmax Regression

> P — L W) = exp(wimn)
(yTL - |:L1’I7,7 ) - leil exp(wl‘gzn)

» W =|wiws ... wglpxi

» We can think of y,, are drawn from multimodal distribution

P(y| X, W) H H s Likelihood function

» where y,, = 1 if true class of example n is [ and y,, = 0 for
all other (.

45



Hyperplane based classifiers and
Perceptron




Linear as Optimization

Supervised Learning Problem

» Given data {(n,y,)}2_; find f: X — ) that best
approximates the relation between X and Y.

» Determine f such a way that loss [(y, f(z)) is minimum.

» f and [ are specific to the problem and the method that we

choose.

46



Linear Regression

> Data: {(n,yn) Iy
» z, € RP is a D dimensional input
> y, € R is the output
Aim is to find a hyperplane that fits best these points.

» Here hyperplane is a model of choice i.e.,

D
flz) = ijwj +b=wTz +b
j=1

» Here wy,...,wy and b are model parameters
» Best is determined by some loss function
N

Loss(w) = Z [yn — f2a)]

n=1
» Aim : Determine the model parameters that minimize the
loss.

47



Logistic Regression

Problem Set-Up

» Two class classification

» Instead of the exact labels estimate the probabilities of the

labels i.e.

Predict Py, = 1|xn, w) = pin
P(yp = Oz, w) =1 — pin

» Here (z,,yy,) is the input output pair.
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Logistic Regression(Contd...)

Problem

Find a function f such that,

n= f(xn)
Model
1
pin = flon) = o(when) = 4
exp(wTxy)

1+ exp(wTzy,)

49



Logistic Regression(Contd...)

Sigmoid Function

» Here o(.) is the sigmoid function.

sigmoid RelU

ot =

s R{z) =maz(0, z)

» The model first computes a real valued score
wle = le 1 wiz; and then nonlinearly “squashes” it
between (0,1) to turn into a probability.

50



Logistic Regression(contd...)

Loss Function: Here we use cross entropy loss instead of
squared loss.

Cross entropy loss is defined as:

— log(pn) when Yn =1

L(ya () = E

log(1 — pp,)  when Yn =0

= —ynlog(pn) — (1 — yn) log(1 — )
= —ynlog(o(wTzy)) — (1 — yn) log(1 — o(w'zy))

And now empirical risk is
N
L(w) = — Z[yanxn —log(1 + exp(wTaxy))]

n=1
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Logistic Regression(contd...)
By taking the derivative w.r.t w

oL U
ow = Z(Mn — Yn)Tn,

n=1

» Here the Gradient Descent Algorithm is
Initialize w® € RP randomly
Iterate until the convergence

N
t+1 _ t t
W= W ()~ y)an
New learned pPrevious  [earning =l Gradient at
parameter or value rate previous value
weights

» Note: Here u® = o(w® z,)
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Logistic Regression (contd...)

Let us take a look at the update equation again

N
t+1) t E t
wt) = O n (M%) — Yn)Tn,
New learned  previous  Learning "=l Gradient at
parameter or value rate previous value
weights

What do we notice here?

Problem: Calculating gradient in each iteration requires all the
data. When N is large this may not be feasible.
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Stochastic Gradient Descent

» Strategy: Approximate gradient using randomly chosen
data point (zy,, yn)

W) = 0~ (D — ),

» Also: Replace predicted label probability ugf ) by predicted

binary label Qﬁf), where

1 if ,u,(f) > 0.5 or w(t)Txn >0
0 if ,u,(f) < 0.5 or w®z, <0

i =

54



Stochastic Gradient Descent (contd...)

» Hence: Update rule becomes

W = w® — (3 — yn)an

» This is mistake driven update rule

» w® gets updated only when there is a misclassification i.e.
A(t) £
Yn
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Stochastic Gradient Descent (contd...)

We will do one more simple change:

» Change: the class labels to {-1,41}

(1) - —2yp if ?)r(zt) # yg)
— U’ T = ) ()
0 if Un’ = Yn

» Hence: Whenever there is a misclassification.

w™D = w® — 2,2,

» — This is a perceptron learning algorithm which is a

hyperplane based learning algorithm.
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Hyperplanes
» Separates a d-dimensional space into two half

spaces(positive and negative)

» Equation of the hyperplane is

wle =0

» By adding bias b € R
wlz+b=0 b>0 moving the
hyperplane parallely along w
b <0 opposite direction
57



Hyperplane based classification

» Classification rule

y = sign(wTx + b)

wlr+b>0 = y=+1

wlr+b<0 = y=-1

58



Hyperplane based classification

|

K] ——

Wy

>0?

> +l/1
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The Perceptron Algorithm (Rosenblatt, 1958)

» Aim is to learn a linear hyperplane to separate two classes.

» Mistake drives online learning algorithm

» Guaranteed to find a separating hyperplane if data is
linearly separable.
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Perceptron Algorithm

» Given training data D = {(z1,41), .-, (Tn, Yn)}
» Initialize wyq = [0, ...,0], bog =0
» Repeat until convergence.

» For a random (z,,y,) € D

> If yo(wTa, +0) <0
[Or sign(wTx + b) # y,, i.e mistake mode]

> Wnew = Wold + YnTn

> bnew = botg + Yn
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Perceptron Convergence Theorem (Block and Novikoff)

"Roughly" : If the data is linearly separable perceptron
algorithm converges.
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What if the data is not linearly separable?

Yes! In practice, most often the data is not linearly separable.
Then

» Make linearly separable using kernel methods.

» (Or) Use multilayer perceptron.

What are all these?

» The first leads to Support Vector Machines, that rules
machine learning for decades

» The second one leads to Deep Learning!
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What we learned?

» Maximum Likelihood Estimates

» Bayes again! MAP

v

Probabilistic view of Linear and Logistic Regression

v

Hyperplanes and Perceptrons

v

The two very big paradigms in ML
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