$MACHINE \ LEARNING {}_{\tt by \ ambed kar@IISc}$

- ▶ Probabilistic view of linear regression
- ▶ Logistic regression
- Hyperplane based classifiers and perceptron

Probabilistic View of Linear Regression

Logistic Regression

Hyperplane based classifiers and Perceptron

Probabilistic View of Linear Regression

Maximum Likelihood Estimation

- Let $X = x_1, x_2, \ldots, x_N$, where $x_n \in \mathbb{R}^d$ be some data that is generated from $x_n \sim P(x|\theta)$
 - ▶ **Recall**: In the statistical approach to machine learning, we assume that there is an underlying probability distribution from which the data is sampled.
 - \blacktriangleright Hence θ denotes the parameters of the distribution.
 - For example $x_n \sim \mathcal{N}(x|\mu, \sigma)$. That is $\theta = (\mu, \sigma)$.
- Assumption: The data in X is generated i.i.d. (independent and identically distributed). This is very important assumption and we see this very often.
- Aim: Learn θ given the data $X = x_1, x_2, \ldots, x_N$.

- We say two random variables X, Y are identical that means that their probability distributions are the same
 - ► If two Gaussian random variables are same only if their means and variance (covariance matrices) are same.
- We say two random variables X, Y are independent if

$$P(X,Y) = P(X)P(Y)$$

• Given $X = x_1, x_2, \ldots, x_N$, and $x_n \sim P(x|\theta)$

- ▶ Learn P so that likelihood of $x_1, x_2, ..., x_N$ are sampled from P is maximum.
- \blacktriangleright Equivalently learn or estimate θ so that likelihood of

$$x_1, x_2, \ldots, x_N$$
 are sampled from P is maximum.

▶ By the iid assumption

$$P(X|\theta) = P(x_1, x_2, \dots, x_N|\theta)$$
$$= \prod_{n=1}^{N} P(x_n|\theta)$$
$$\stackrel{P(x|\theta)}{}$$

How do we estimate θ given the data X.

\Downarrow

Find value of θ that makes observed data most probable.

\Downarrow

Find θ that maximizes likelihood function

$$\mathcal{L} = \log P(X|\theta) = \sum_{n=1}^{N} \log P(x_n|\theta)$$

Example:

Suppose X_n is a binary random variable. Suppose it follows Bernoulli distribution

i.e. $P(x|\theta) = \theta^x (1-\theta)^{1-x}$

$$\mathcal{L}(\theta) = \sum_{n=1}^{N} \log P(x_n | \theta) = \sum_{n=1}^{N} x_n \log \theta + (1 - x_n) \log(1 - \theta)$$
$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = \frac{1}{\theta} \sum_{n=1}^{N} x_n + \frac{1}{1 - \theta} \sum_{n=1}^{N} (1 - x_n)$$
$$= \frac{1}{\theta} \sum_{n=1}^{N} x_n + \frac{1}{1 - \theta} (N - \sum_{n=1}^{N} x_n)$$

$$\implies \theta_{MLE}^* = \frac{\sum_{n=1}^N x_n}{N}$$

[In a coin tossing experiment, it is just a fraction of heads]

Maximum a Posteriori Estimate

- We will have a prior on parameter θ i.e. $P(\theta)$ Yes θ is no more a mere number, it is a Random Variable.
 - \blacktriangleright One can have knowledge on θ
 - ▶ It acts as a regularizer (We will see later)
- ► Bayes Rule:

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

 $P(\theta|X)$: Posterior $P(X|\theta)$: Likelihood $P(\theta)$: Prior P(X): Evidence

Maximum a Posteriori Estimate (contd...)

Bayes Rule:

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

Maximum a Posteriori Estimate (contd...)

MAP Estimate

$$\begin{aligned} \theta_{MAP}^* &= \arg\max_{\theta} P(\theta|x) \\ &= \arg\max_{\theta} \log P(x|\theta) + \log P(\theta) \\ &= \arg\max_{\theta} \sum_{n=1}^N \log P(x_n|\theta) + \log P(\theta) \end{aligned}$$

<u>Note</u>: When $P(\theta)$ is a uniform distribution, it reduces to MLE.

Linear Regression : Probabilistic Setting

 Each response is generated by a linear model + Gaussian noise

$$Y = W^T X + E$$

- ► That is, given N training samples $\{(x_n, y_n)_{n=1}^N\}$ i.i.d. $x_n \in \mathbb{R}^d$ and $y_n \in \mathbb{R}$
 - $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$
 - $y_n \sim \mathcal{N}(w^T x_n, \sigma^2)$

$$\implies P(Y|X,W) = \mathcal{N}(y|w^T x, \sigma^2)$$
$$= \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-w^T x)^2}{2\sigma^2}\right)$$

Linear Regression : ML Estimation

Log Likelihood

$$\log \mathcal{L}(w) = \log P(\mathcal{D}|w) = \log P(y|X, W)$$
$$= \log \prod_{n=1}^{N} P(y_n|x_n, w)$$
$$= \sum_{n=1}^{N} \log P(y_n|x_n, w)$$
$$= \sum_{n=1}^{N} \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y_n - w^T x_n)^2}{2\sigma^2} \right]$$

Linear Regression : ML Estimation (contd...)

$$W_{MLE}^{*} = \arg\max_{w} -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (y_{n} - w^{T}x_{n})^{2}$$
$$= \arg\min_{w} \frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (y_{n} - w^{T}x_{n})^{2}$$

i.e. ML Estimation in the case of Gaussian environment \equiv Least square objective for regression

Linear Regression : MAP Estimate

- ► Here we introduce prior on the parameter w.
 ⇒ This will lead to regularization of model.
 - Remember we treat parameters as Random Variables in MAP.

$$\blacktriangleright P(w) = \mathcal{N}(w|\underbrace{0}_{\text{MeanVariance}}, \underbrace{\lambda^{-1}I}_{\text{MeanVariance}})$$

▶ We have multivariate Gaussian

$$\mathcal{N}(x:\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(X-\mu)\right)$$
$$= \frac{1}{\sqrt{(2\pi)^{\frac{D}{2}}(\frac{1}{\lambda})^{\frac{D}{2}}}} \exp\left(-\frac{\lambda}{2} w^T w\right)$$

Linear Regression : MAP Estimate (contd...)

▶ log posterior probability

►

$$\log(w|\mathcal{D}) = \log \frac{P(\mathcal{D}|w)P(w)}{P(\mathcal{D})}$$
$$= \log P(w) + \log P(w|\mathcal{D}) - \log P(\mathcal{D})$$

$$W_{MAP}^* = \underset{w}{\arg \max} \log P(w|\mathcal{D})$$

=
$$\underset{w}{\arg \max} \{ \log P(w) + \log P(\mathcal{D}|w) + \log P(\mathcal{D}) \}$$

=
$$\underset{w}{\arg \max} \{ \log P(w) + \log P(\mathcal{D}|w) \}$$

Linear Regression : MAP Estimate (contd...)

$$W_{MAP}^* = \arg\max_{w} \log P(w|\mathcal{D})$$

= $\arg\max_{w} \left[-\frac{D}{2}\log 2\pi - \frac{\lambda}{2}w^Tw + \sum_{n=1}^{N} \left(-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(x_n - w^Tx_n)^2}{2\sigma^2}\right)\right]$
= $\arg\max_{w} \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - w^Tx_n)^2 + \frac{\lambda}{2}w^Tw$

MAP estimate in the case of Gaussian environment \equiv Least square objective with L_2 regularization.

MLE vs MAP

MAP estimate shrinks the estimate of w towards the prior.

Logistic Regression

- ▶ Two class classification
- Instead of the exact labels estimate the probabilities of the labels.

▶ i.e predict

$$P(y_n = 1 | x_n, w) = \mu_n$$
$$P(y_n = 0 | x_n, w) = 1 - \mu_n$$

The Logistic Regression Model

$$\mu_n = f(x_n) = \sigma(w^{\mathsf{T}} x_n) = \frac{1}{1 + \exp(-w^{\mathsf{T}} x_n)} = \frac{\exp(w^{\mathsf{T}} x_n)}{1 + \exp(w^{\mathsf{T}} x_n)}$$

- Here σ is the sigmoid or logistic function.
- ▶ The model first computes a real-values score.

$$w^{\mathsf{T}}x = \sum_{i=1}^d w_i x_i$$

and **non-linearly** squashes it between (0, 1) to turn this into a probability.

The Decision Boundary

If
$$w^{\mathsf{T}}x > 0 \implies P(y_n = 1|x_n, w) > P(y_n = 0|x_n, w)$$

 $w^{\mathsf{T}}x < 0 \implies P(y_n = 1|x_n, w) < P(y_n = 0|x_n, w)$

Logistic Regression: Decision Boundary

Loss Function Optimization

► Squared Loss

$$\ell(y_n, f(x_n) = (y_n - f(x_n))^2$$
$$= (y_n - \sigma(w^{\mathsf{T}}x_n))^2$$

- ▶ This is non-convex and not easy to optimize.
- Cross Entropy loss

$$\ell(y_n, f(x_n)) = \begin{cases} -\log(\mu_n) & \text{when } y_n = 1 \\ -\log(1 - \mu_n) & \text{when } y_n = 0 \end{cases}$$
$$= \begin{cases} -P(y_n = 1 | x_n, w_n) & \text{when } y_n = 1 \\ -P(y_n = 0 | x_n, w_n) & \text{when } y_n = 0 \end{cases}$$

Cross Entropy loss

$$l(y_n, f(x_n)) = -y_n \log(\mu_n) - (1 - y_n) \log(1 - \mu_n) = -y_n \log(\sigma(w^{\mathsf{T}} x_n)) - (1 - y_n) \log(1 - \sigma(w^{\mathsf{T}} x_n))$$

▶ Cross Entropy Loss over entire data.

$$L(w) = \sum_{n=1}^{N} l(y_n, f(x_n))$$

= $\sum_{n=1}^{N} [-y_n \log(\mu_n) - (1 - y_n) \log(1 - \mu_n)]$
= $-\sum_{n=1}^{N} [y_n w^{\mathsf{T}} x_n - \log(1 + \exp(w^{\mathsf{T}} x_n))]$

• By adding L_2 regularizer.

$$L(w) = -\sum_{n=1}^{N} [y_n w^{\mathsf{T}} x_n - \log(1 + \exp(w^{\mathsf{T}} x_n)) + \lambda ||w||^2$$

Logistic Regression: MLE formulation

- AIM Learn w from the data that can predict the probability of x_n belong to 0 or 1.
- ▶ Log Likelihood: Given $\mathcal{D} = \{(x_1, y_1), \ldots, (x_N, y_N)\}$

$$\log L(w) = \log P(\mathcal{D}|w)$$
$$= \log P(Y|X, w)$$
$$= \log \prod_{n=1}^{N} P(y_n|x_n, w)$$
$$= \log \prod_{n=1}^{N} \mu_n^{y_n} (1 - \mu_n)^{1 - y_n}$$

 $\blacktriangleright \because Y$ is a Bernoulli random variable

$$P(y_n = 1 | x_n, w) = \mu_n$$

$$P(y_n = 0 | x_n, w) = 1 - \mu_n$$
26

Logistic Regression: MLE formulation(contd...)

$$P(Y|X,w) = \sum_{n=1}^{N} [y_n \log \mu_n + (1-y_n) \log(1-\mu_n)]$$

We have $\mu_n = \frac{\exp(w^{\intercal} x_n)}{1+\exp(w^{\intercal} x_n)}$
$$\implies L(w) = \sum_{n=1}^{N} [y_n w^{\intercal} x_n - \log(1+\exp(w^{\intercal} x_n))]$$

Which is same as the cross entropy loss minimization.

Logistic Regression: MAP estimate

▶ MAP \rightarrow We assume a prior distribution on the weight vector w. That is

$$P(w) = N(w|0), \lambda^{-1}I)$$
$$= \frac{1}{(2\pi)^{\frac{D}{2}}} \exp\left(-\frac{\lambda}{2}w^{\mathsf{T}}w\right)$$

▶ Note: Multivariate Gaussian is defined as

$$P(w) = \frac{1}{\sqrt{(2\pi)^{D}|\Sigma|}} \exp\left[-\frac{1}{2}(X-\mu)^{\mathsf{T}}\Sigma^{-1}(X-\mu)\right]$$

▶ Then MAP estimate is

$$W^*_{MAP} = \operatorname*{arg\,max}_{w} \log P(W|\mathcal{D})$$

Logistic Regression: MAP estimate (cont...)

 \blacktriangleright We have

$$W_{MAP}^* = \arg\max_{w} \log P(W|\theta)$$

= $\arg\max_{w} \log P(\mathcal{D}|w) + \log P(w)$
= $\arg\max_{w} \left[-\frac{D}{2} \log 2\pi - \frac{\lambda}{2} w^{\mathsf{T}} w - \sum_{n=1}^{N} \log(1 + \exp(-y_n w^{\mathsf{T}} x_n)) \right]$
= $\arg\max_{w} \sum_{n=1}^{N} \log \left[1 + \exp(-y_n w^{\mathsf{T}} x_n) \right] + \frac{\lambda}{2} w^{\mathsf{T}} w$

Which is same as the minimizing regularized cross entropy loss.

Logistic Regression: Some Comments

 Objective function of Logistic Regression is same as SVMs except for the loss function.

 $\begin{array}{cc} \mbox{Logistic Regression} \rightarrow \mbox{log loss} \\ \mbox{SVM} & \rightarrow \mbox{hinge loss} \end{array}$

▶ Logistic regression can be extended to multiclass case: just use softmax function.

$$P(Y = k | w, x) = \frac{\exp(w_k^{\mathsf{T}} x)}{\sum_k \exp(w_k^{\mathsf{T}} x)} \quad k = 1, 2, \dots, K \text{ classes}$$

Optimization is the Key

- Almost all problems in machine learning leads to optimization problems
- ▶ The following two factors decides the fate of any method:
 - ▶ What kind of optimization problem that we are led to
 - ▶ What are all optimization methods that are available to us
- There are several methods that are available for optimization, among these gradient descent methods are most popular

Gradient Descent methods are Used in

- ▶ Linear Regression
- ▶ Logistic Regression
 - It is just classification, but instead of labels it gives us class probability
- ▶ Support Vector Machines
- Neural Networks
 - ► The backbone of neural networks is Back-propagation algorithm

Example of an objective

- Most often, we do not even have functional form of the objective.
 - ► Given x, we can only compute f(x)
 - Sometime this may involve a simulating a system
 - Computing each f(x) can be time consuming

▶ This becomes even more difficult as x is a D-dimensional vector and D is very large

Multivariate Functions

(c) $f(x,y) = \cos^2(x) + y^2$

Partial Derivatives

(a) Surface given by $f(x, y) = 9 - \frac{x}{2} - \frac{y}{2}$

(c) $f(x, 1) = 8 - \frac{x}{2}$ denotes a curve, and f'(x) = -2x denotes derivative (or slope) of that curve

Partial Derivatives (contd...)

Idea of Gradient Descent Algorithm

- Start at some random point (of course final results will depend on this)
- ► Take steps based on the gradient vector of the current position till convergence
 - Gradient vector give us direction and rate of fastest increase any any point
 - ► Any point x if the gradient is nonzero, then the direction of gradient is the direction in which the function most quickly from x
 - ► The magnitude of gradient is the rate of increase in that direction

Idea of Gradient Descent Algorithm¹

¹Credits for all the images in this sections goes to Michailidis and Maiden

Gradient Descent

► **AIM**: To minimize the function

$$L(w) = \sum_{n=1}^{N} \left[y_n w^{\mathsf{T}} x_n - \log(1 + \exp(w^{\mathsf{T}} x_n)) \right]$$

- We do this by calculating the derivative of L w.r.t w.
- ▶ Note: Since log function is concave in *w*, this has a unique minimum.

Gradient Descent

► **AIM**: To minimize the function

$$L(w) = \sum_{n=1}^{N} \left[y_n w^{\mathsf{T}} x_n - \log(1 + \exp(w^{\mathsf{T}} x_n)) \right]$$

► Gradient:

$$\frac{\partial L}{\partial w} = -\sum_{n=1}^{N} \left[y_n x_n - \frac{\exp(w^{\mathsf{T}} x_n)}{1 + \exp(w^{\mathsf{T}} x_n)} x_n \right]$$
$$= -\sum_{n=1}^{N} (y_n - \mu_n) x_n = X^{-1} (\mu - y)$$
where $\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_N \end{bmatrix}$ $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$ and $X = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}_{N \times D}$

Gradient Descent (contd...)

- ▶ Since there is no closed form solution, we take a recourse to iterative methods like gradient descent.
- ► Gradient Descent:
 - 1 Initialize $w^{(1)} \in \mathbb{R}^D$ randomly.
 - **2** Iterate until the convergence.

$$w^{(t+1)} = w^{(t)} - \eta \underbrace{\sum_{n=1}^{N} \left(\mu_n^{(t)} - y_n \right) x_n}_{\text{Gradient at}}$$

$$\blacktriangleright \ \mu_n^{(t)} = \sigma(w^{(t)^{\mathsf{T}}} x_n)$$

• η is the learning rate.

Gradient Descent (contd...)

▶ We have the following update

$$w^{(t+1)} = w^{(t)} - \eta \sum_{\substack{n=1\\\text{Gradient at previous value}}}^{N} (\mu_n^{(t)} - y_n) x_n$$

- ► Note: Calculating gradient in each iteration requires all the data. When N is large this may not be feasible.
- ► Stochastic Gradient Descent: Use mini-batches to compute the gradient.

Gradient Descent: Some Remarks

Note on Learning Rate:

- ▶ Sometimes choosing the learning rate is difficult
 - Larger learning rate \rightarrow Too much fluctuation.
 - Smaller learning rate \rightarrow Slow convergence

To deal with this problem:

- Choose optimal step size at each iteration η_t using line search.
- ▶ Add momentum to the update.

$$w^{(t+1)} = w^{(t)} - \eta_{(t)}g^{(t)} + \alpha_t \left(w^{(t)} - w^{(t-1)}\right)$$

► Use second order methods like Newton method to exploit the curvature of the loss function. (But we need to compute Hessian matrix.)

Multiclass Logistic or Softmax Regression

▶ Logistic regression can be extend for the multiclass case.

• Let
$$y_n \in \{0, 1, \dots, k-1\}$$

► Define

$$P(y_n = k | x_n, W) = \frac{\exp(w_k^{\mathsf{T}} x_n)}{\sum_{l=1}^{K} \exp(w_k^{\mathsf{T}} x_{n_l})}$$
$$= \mu_{n_k}$$

- * μ_{n_K} : Probability that n^{th} sample belongs to k^{th} class and $\sum_{l=1}^{k} \mu_{n_l} = 1$
- ► Softmax: Class k with largest $w_k^{\mathsf{T}} x_n$ dominates the probability.

Multiclass Logistic or Softmax Regression

•
$$P(y_n = k | x_n, W) = \frac{\exp(w_k^{\mathsf{T}} x_n)}{\sum_{l=1}^K \exp(w_k^{\mathsf{T}} x_n)}$$

$$\blacktriangleright W = [w_1 w_2 \dots w_k]_{D \times K}$$

• We can think of y_n are drawn from multimodal distribution

$$P(y|X,W) = \prod_{n=1}^{N} \prod_{l=1}^{K} \mu_{n_l}^{y_{n_l}}$$
: Likelihood function

• where $y_{n_l} = 1$ if true class of example *n* is *l* and $y_{n_l} = 0$ for all other *l*.

Hyperplane based classifiers and Perceptron

Linear as Optimization

Supervised Learning Problem

- Given data $\{(x_n, y_n)\}_{n=1}^N$ find $f : \mathcal{X} \to \mathcal{Y}$ that best approximates the relation between X and Y.
- Determine f such a way that loss l(y, f(x)) is minimum.
- ▶ f and l are specific to the problem and the method that we choose.

Linear Regression

- Data: $\{(x_n, y_n)\}_{n=1}^N$
 - $x_n \in \mathbb{R}^D$ is a *D* dimensional input
 - $y_n \in \mathbb{R}$ is the output

Aim is to find a **hyperplane** that fits **best** these points.

▶ Here hyperplane is a model of choice i.e.,

$$f(x) = \sum_{j=1}^{D} x_j w_j + b = w^{\mathsf{T}} x + b$$

- Here w_1, \ldots, w_d and b are model parameters
- ▶ Best is determined by some loss function

$$Loss(w) = \sum_{n=1}^{N} [y_n - f(x_n)]^2$$

► Aim : Determine the model parameters that minimize the loss.

Logistic Regression

Problem Set-Up

- ▶ Two class classification
- ► Instead of the exact labels estimate the probabilities of the labels i.e.

Predict
$$P(y_n = 1 | x_n, w) = \mu_n$$

 $P(y_n = 0 | x_n, w) = 1 - \mu_n$

• Here (x_n, y_n) is the input output pair.

Logistic Regression(Contd...)

Problem

Find a function f such that,

$$\mu = f(x_n)$$

Model

$$\mu_n = f(x_n) = \sigma(w^{\mathsf{T}} x_n) = \frac{1}{1 + \exp(-w^{\mathsf{T}} x_n)}$$
$$= \frac{\exp(w^{\mathsf{T}} x_n)}{1 + \exp(w^{\mathsf{T}} x_n)}$$

Logistic Regression(Contd...)

Sigmoid Function

▶ The model first computes a real valued score $w^{\intercal}x = \sum_{i=1}^{D} w_i x_i$ and then nonlinearly "squashes" it between (0,1) to turn into a probability.

Logistic Regression(contd...)

Loss Function: Here we use cross entropy loss instead of squared loss.

Cross entropy loss is defined as:

$$L(y_n, f(x_n)) = \begin{cases} -\log(\mu_n) & \text{when} & y_n = 1\\ -\log(1 - \mu_n) & \text{when} & y_n = 0 \end{cases}$$
$$= -y_n \log(\mu_n) - (1 - y_n) \log(1 - \mu_n)$$
$$= -y_n \log(\sigma(w^{\mathsf{T}}x_n)) - (1 - y_n) \log(1 - \sigma(w^{\mathsf{T}}x_n))$$

And now empirical risk is

$$L(w) = -\sum_{n=1}^{N} [y_n w^{\mathsf{T}} x_n - \log(1 + \exp(w^{\mathsf{T}} x_n))]$$

Logistic Regression(contd...)

By taking the derivative w.r.t \boldsymbol{w}

$$\frac{\partial L}{\partial w} = \sum_{n=1}^{N} (\mu_n - y_n) x_n$$

- ► Here the Gradient Descent Algorithm is Initialize $w^{(1)} \in \mathbb{R}^D$ randomly
 - 2 Iterate until the convergence

• Note: Here $\mu^{(t)} = \sigma(w^{(t)^{\intercal}} x_n)$

Let us take a look at the update equation again

What do we notice here?

Problem: Calculating gradient in each iteration requires all the data. When N is large this may not be feasible.

Stochastic Gradient Descent

► Strategy: Approximate gradient using randomly chosen data point (x_n, y_n)

$$w^{(t+1)} = w^{(t)} - \eta_t (\mu_n^{(t)} - y_n) x_n$$

► Also: Replace predicted label probability $\mu_n^{(t)}$ by predicted binary label $\hat{y}_n^{(t)}$, where

$$\hat{y}_n^{(t)} = \begin{cases} 1 & \text{if } \mu_n^{(t)} \ge 0.5 \text{ or } w^{(t)^{\mathsf{T}}} x_n \ge 0\\ 0 & \text{if } \mu_n^{(t)} < 0.5 \text{ or } w^{(t)^{\mathsf{T}}} x_n < 0 \end{cases}$$

Stochastic Gradient Descent (contd...)

► **Hence**: Update rule becomes

$$w^{(t+1)} = w^{(t)} - \eta_t (\hat{y}_n^{(t)} - y_n) x_n$$

- ▶ This is mistake driven update rule
- ▶ $w^{(t)}$ gets updated only when there is a misclassification i.e. $\hat{y}_n^{(t)} \neq y_n$

Stochastic Gradient Descent (contd...)

We will do one more simple change:

▶ Change: the class labels to {-1,+1}

$$\implies \hat{y}_n^{(t)} - y_n = \begin{cases} -2y_n & \text{if } \hat{y}_n^{(t)} \neq y_n^{(t)} \\ 0 & \text{if } \hat{y}_n^{(t)} = y_n^{(t)} \end{cases}$$

▶ **Hence**: Whenever there is a misclassification.

$$w^{(t+1)} = w^{(t)} - 2\eta_{(t)}y_n x_n$$

► ⇒ This is a perceptron learning algorithm which is a hyperplane based learning algorithm.

Hyperplanes

- Separates a d-dimensional space into two half spaces(positive and negative)
- Equation of the hyperplane is

$$w^{\intercal}x = 0$$

► By adding bias $b \in \mathbb{R}$ $w^{\intercal}x + b = 0$ b > 0 moving the hyperplane parallely along wb < 0 opposite direction

Hyperplane based classification

Hyperplane based classification

The Perceptron Algorithm (Rosenblatt, 1958)

▶ Aim is to learn a linear hyperplane to separate two classes.

▶ Mistake drives online learning algorithm

 Guaranteed to find a separating hyperplane if data is linearly separable.

Perceptron Algorithm

► Given training data $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}$

• Initialize
$$w_{old} = [0, ..., 0], \ b_{old} = 0$$

- ▶ Repeat until convergence.
 - For a random $(x_n, y_n) \in \mathcal{D}$

► If
$$y_n(w^{\intercal}x_n + b) \le 0$$

[Or sign $(w^{\intercal}x + b) \ne y_n$ i.e mistake mode]

•
$$w_{new} = w_{old} + y_n x_n$$

$$\bullet \ b_{new} = b_{old} + y_n$$

"Roughly" : If the data is linearly separable perceptron algorithm converges.

What if the data is not linearly separable?

Yes! In practice, most often the data is not linearly separable. Then

- ▶ Make linearly separable using kernel methods.
- ▶ (Or) Use multilayer perceptron.

What are all these?

- ► The first leads to Support Vector Machines, that rules machine learning for decades
- ▶ The second one leads to Deep Learning!

- Maximum Likelihood Estimates
- ▶ Bayes again! MAP
- ▶ Probabilistic view of Linear and Logistic Regression
- ▶ Hyperplanes and Perceptrons
- ▶ The two very big paradigms in ML