
Machine Learning by ambedkar@IISc

I Probabilistic view of linear regression

I Logistic regression

I Hyperplane based classifiers and
perceptron

Topics

Probabilistic View of Linear Regression

Logistic Regression

Hyperplane based classifiers and Perceptron

2

Probabilistic View of Linear
Regression

Maximum Likelihood Estimation

I Let X = x1, x2, . . . , xN , where xn ∈ Rd be some data that
is generated from xn ∼ P (x|θ)

I Recall: In the statistical approach to machine learning, we
assume that there is an underlying probability distribution
from which the data is sampled.

I Hence θ denotes the parameters of the distribution.

I For example xn ∼ N (x|µ, σ). That is θ = (µ, σ).

I Assumption: The data in X is generated i.i.d.
(independent and identically distributed). This is very
important assumption and we see this very often.

I Aim: Learn θ given the data X = x1, x2, . . . , xN .

3

Diversion: Some Probability

I We say two random variables X, Y are identical that
means that their probability distributions are the same

I If two Gaussian random variables are same only if their
means and variance (covariance matrices) are same.

I We say two random variables X, Y are independent if

P (X,Y) = P (X)P (Y)

4

Maximum Likelihood Estimation (contd. . .)

I Given X = x1, x2, . . . , xN , and xn ∼ P (x|θ)
I Learn P so that likelihood of x1, x2, . . . , xN are sampled

from P is maximum.
I Equivalently learn or estimate θ so that likelihood of
x1, x2, . . . , xN are sampled from P is maximum.

I By the iid assumption

P (X|θ) = P (x1, x2, . . . , xN |θ)

=

N∏
n=1

P (xn|θ)

I P (X|θ) is the likelihood.

5

Maximum Likelihood Estimation (contd. . .)

How do we estimate θ given the data X.

⇓

Find value of θ that makes observed data most probable.

⇓

Find θ that maximizes likelihood function

L = logP (X|θ) =

N∑
n=1

logP (xn|θ)

6

Maximum Likelihood Estimation (contd. . .)

θ∗MLE = arg max
θ

L(θ) = arg max
θ

N∑
n=1

logP (xn|θ)

7

Maximum Likelihood Estimation (contd. . .)

Example:

Suppose Xn is a binary random variable. Suppose it follows
Bernoulli distribution
i.e. P (x|θ) = θx(1− θ)1−x

L(θ) =

N∑
n=1

logP (xn|θ) =

N∑
n=1

xn log θ + (1− xn) log(1− θ)

∂L(θ)

∂θ
=

1

θ

N∑
n=1

xn +
1

1− θ

N∑
n=1

(1− xn)

=
1

θ

N∑
n=1

xn +
1

1− θ
(N −

N∑
n=1

xn)

8

Maximum Likelihood Estimation (contd. . .)

=⇒ θ∗MLE =

∑N
n=1 xn
N

[In a coin tossing experiment, it is just a fraction of heads]

9

Maximum a Posteriori Estimate

I We will have a prior on parameter θ i.e. P (θ)

Yes θ is no more a mere number, it is a Random Variable.
I One can have knowledge on θ
I It acts as a regularizer (We will see later)

I Bayes Rule:

P (θ|X) =
P (X|θ)P (θ)

P (X)

P (θ|X) : Posterior

P (X|θ) : Likelihood

P (θ) : Prior

P (X) : Evidence

10

Maximum a Posteriori Estimate (contd. . .)

Bayes Rule:

P (θ|X) =
P (X|θ)P (θ)

P (X)

11

Maximum a Posteriori Estimate (contd. . .)

MAP Estimate

θ∗MAP = arg max
θ

P (θ|x)

= arg max
θ

logP (x|θ) + logP (θ)

= arg max
θ

N∑
n=1

logP (xn|θ) + logP (θ)

Note: When P (θ) is a uniform distribution, it reduces to MLE.

12

Linear Regression : Probabilistic Setting

I Each response is generated by a linear model + Gaussian
noise

Y = W TX + E

I That is, given N training samples {(xn, yn)Nn=1} i.i.d.
xn ∈ Rd and yn ∈ R

I εn ∼ N (0, σ2)

I yn ∼ N (wTxn, σ
2)

=⇒ P (Y |X,W) = N (y|wTx, σ2)

=
1

σ
√

2π
exp
(
−(y − wTx)2

2σ2
)

13

Linear Regression : ML Estimation

Log Likelihood

logL(w) = logP (D|w) = logP (y|X,W)

= log

N∏
n=1

P (yn|xn, w)

=

N∑
n=1

logP (yn|xn, w)

=

N∑
n=1

[
−1

2
log(2πσ2)− (yn − wTxn)2

2σ2

]

14

Linear Regression : ML Estimation (contd. . .)

W ∗
MLE = arg max

w
− 1

2σ2

N∑
n=1

(yn − wTxn)2

= arg min
w

1

2σ2

N∑
n=1

(yn − wTxn)2

i.e. ML Estimation in the case of Gaussian environment ≡ Least
square objective for regression

15

Linear Regression : MAP Estimate

I Here we introduce prior on the parameter w.
⇒ This will lead to regularization of model.

I Remember we treat parameters as Random Variables in
MAP.

I P(w) = N (w| 0︸︷︷︸
Mean

, λ−1I︸ ︷︷ ︸
Variance

)

I We have multivariate Gaussian

N (x : µ,Σ) =
1√

(2π)D|Σ|
exp
(
−1

2
(x− µ)TΣ−1(X − µ)

)
=

1√
(2π)

D
2 (1

λ)
D
2

exp
(
−λ

2
wTw

)

16

Linear Regression : MAP Estimate (contd. . .)

I log posterior probability

log(w|D) = log
P (D|w)P (w)

P (D)

= logP (w) + logP (w|D)− logP (D)

I

W ∗
MAP = arg max

w
logP (w|D)

= arg max
w

{
logP (w) + logP (D|w) + logP (D)

}
= arg max

w

{
logP (w) + logP (D|w)

}
17

Linear Regression : MAP Estimate (contd. . .)

W ∗
MAP = arg max

w
logP (w|D)

= arg max
w

[
−D

2
log 2π − λ

2
wTw

+

N∑
n=1

(
−1

2
log(2πσ2)− (xn − wTxn)2

2σ2
)]

= arg max
w

1

2σ2

N∑
n=1

(yn − wTxn)2 +
λ

2
wTw

MAP estimate in the case of Gaussian environment ≡ Least
square objective with L2 regularization.

18

MLE vs MAP

MAP estimate shrinks the estimate of w towards the prior.

19

Logistic Regression

Problem Set Up

I Two class classification

I Instead of the exact labels estimate the probabilities of the
labels.

I i.e predict

P (yn = 1|xn, w) = µn

P (yn = 0|xn, w) = 1− µn

20

The Logistic Regression Model

µn = f(xn) = σ(wᵀxn) =
1

1 + exp(−wᵀxn)
=

exp(wᵀxn)

1 + exp(wᵀxn)

I Here σ is the sigmoid or logistic function.
I The model first computes a real-values score.

wᵀx =

d∑
i=1

wixi

and non-linearly squashes it between (0, 1) to turn this
into a probability.

wᵀx

µ

0

- 1

Logistic Regression: Sigmoid function

21

The Decision Boundary

If wᵀx > 0 =⇒ P (yn = 1|xn, w) > P (yn = 0|xn, w)

wᵀx < 0 =⇒ P (yn = 1|xn, w) < P (yn = 0|xn, w)

w

wᵀx = 0

Logistic Regression: Decision Boundary

22

Loss Function Optimization

I Squared Loss

`(yn, f(xn) = (yn − f(xn))2

= (yn − σ(wᵀxn))2

I This is non-convex and not easy to optimize.

I Cross Entropy loss

`(yn, f(xn)) =

− log(µn) when yn = 1

− log(1− µn) when yn = 0

=

−P (yn = 1|xn, wn) when yn = 1

−P (yn = 0|xn, wn) when yn = 0

23

Cross Entropy loss

l(yn, f(xn)) = −yn log(µn)− (1− yn) log(1− µn)

= −yn log(σ(wᵀxn))− (1− yn) log(1− σ(wᵀxn))

I Cross Entropy Loss over entire data.

L(w) =

N∑
n=1

l(yn, f(xn))

=

N∑
n=1

[−yn log(µn)− (1− yn) log(1− µn)]

= −
N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn)]

24

Cross Entropy loss

I By adding L2 regularizer.

L(w) = −
N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn)) + λ||w||2

25

Logistic Regression: MLE formulation

I AIM Learn w from the data that can predict the
probability of xn belong to 0 or 1.

I Log Likelihood: Given D = {(x1, y1), . . . , (xN , yN)}

logL(w) = logP (D|w)

= logP (Y |X,w)

= log

N∏
n=1

P (yn|xn, w)

= log

N∏
n=1

µynn (1− µn)1−yn

I ∵ Y is a Bernoulli random variable

P (yn = 1|xn, w) = µn

P (yn = 0|xn, w) = 1− µn
26

Logistic Regression: MLE formulation(contd...)

P (Y |X,w) =

N∑
n=1

[yn logµn + (1− yn) log(1− µn)]

We have µn =
exp(wᵀxn)

1 + exp(wᵀxn)

=⇒ L(w) =

N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn)]

Which is same as the cross entropy loss minimization.

27

Logistic Regression: MAP estimate

I MAP → We assume a prior distribution on the weight
vector w. That is

P (w) = N(w|0), λ−1I)

=
1

(2π)
D
2

exp

(
− λ

2
wᵀw

)
I Note: Multivariate Gaussian is defined as

P (w) =
1√

(2π)D|Σ|
exp

[
− 1

2
(X − µ)ᵀΣ−1(X − µ)

]
I Then MAP estimate is

W ∗
MAP = arg max

w
logP (W |D)

28

Logistic Regression: MAP estimate (cont...)

I We have

W ∗
MAP = arg max

w
logP (W |θ)

= arg max
w

logP (D|w) + logP (w)

= arg max
w

[
− D

2
log 2π − λ

2
wᵀw

−
N∑
n=1

log(1 + exp(−ynwᵀxn))

]

= arg max
w

N∑
n=1

log

[
1 + exp(−ynwᵀxn)

]
+
λ

2
wᵀw

Which is same as the minimizing regularized cross entropy
loss.

29

Logistic Regression: Some Comments

I Objective function of Logistic Regression is same as SVMs
except for the loss function.

Logistic Regression→ log loss

SVM → hinge loss

I Logistic regression can be extended to multiclass case: just
use softmax function.

P (Y = k|w, x) =
exp(wᵀ

kx)∑
k exp(wᵀ

kx)
k = 1, 2, . . . ,K classes

30

Optimization is the Key

I Almost all problems in machine learning leads to
optimization problems

I The following two factors decides the fate of any method:

I What kind of optimization problem that we are led to

I What are all optimization methods that are available to us

I There are several methods that are available for
optimization, among these gradient descent methods are
most popular

31

Gradient Descent methods are Used in

I Linear Regression

I Logistic Regression

I It is just classification, but instead of labels it gives us class
probability

I Support Vector Machines

I Neural Networks

I The backbone of neural networks is Back-propagation
algorithm

32

Example of an objective

I Most often, we do not even
have functional form of the
objective.

I Given x, we can only
compute f(x)

I Sometime this may involve
a simulating a system

I Computing each f(x) can
be time consuming

I This becomes even more difficult as x is a D-dimensional
vector and D is very large

33

Multivariate Functions

(a) f(x, y) = x2 + y2 (b) f(x, y) = −x2 + y2

(c) f(x, y) = cos2(x) + y2 (d) f(x, y) = cos2(x) + cos2(y)

34

Partial Derivatives

(a) Surface given by
f(x, y) = 9− x

2
− y

2

(b) Plane y = 1

(c) f(x, 1) = 8− x
2

denotes a
curve, and f ′(x) = −2x denotes
derivative (or slope) of that
curve

35

Partial Derivatives (contd. . .)

36

Idea of Gradient Descent Algorithm

I Start at some random point (of course final results will
depend on this)

I Take steps based on the gradient vector of the current
position till convergence

I Gradient vector give us direction and rate of fastest increase
any any point

I Any point x if the gradient is nonzero, then the direction of
gradient is the direction in which the function most quickly
from x

I The magnitude of gradient is the rate of increase in that
direction

37

Idea of Gradient Descent Algorithm1

1Credits for all the images in this sections goes to Michailidis and Maiden
38

Gradient Descent

I AIM: To minimize the function

L(w) =

N∑
n=1

[
ynw

ᵀxn − log(1 + exp(wᵀxn)
]

I We do this by calculating the derivative of L w.r.t w.

I Note: Since log function is concave in w, this has a unique
minimum.

39

Gradient Descent

I AIM: To minimize the function

L(w) =

N∑
n=1

[
ynw

ᵀxn − log(1 + exp(wᵀxn)
]

I Gradient:

∂L

∂w
= −

N∑
n=1

[
ynxn −

exp(wᵀxn)

1 + exp(wᵀxn)
xn

]

= −
N∑
n=1

(yn − µn)xn = X−1(µ− y)

where µ =

µ1
...
µN

 Y =

y1
...
yN

 and X =

x1
...
xN

N×D

40

Gradient Descent (contd...)

I Since there is no closed form solution, we take a recourse to
iterative methods like gradient descent.

I Gradient Descent:

1 Initialize w(1) ∈ RD randomly.

2 Iterate until the convergence.

w(t+1) = w(t) − η
N∑

n=1

(
µ(t)
n − yn

)
xn︸ ︷︷ ︸

Gradient at
previous value

I µ
(t)
n = σ(w(t)ᵀxn)

I η is the learning rate.

41

Gradient Descent (contd...)

I We have the following update

w(t+1) = w(t) − η
N∑
n=1

(µ(t)n − yn)xn︸ ︷︷ ︸
Gradient at previous value

I Note: Calculating gradient in each iteration requires all the
data. When N is large this may not be feasible.

I Stochastic Gradient Descent: Use mini-batches to compute
the gradient.

42

Gradient Descent: Some Remarks

Note on Learning Rate:

I Sometimes choosing the learning rate is difficult
I Larger learning rate → Too much fluctuation.
I Smaller learning rate → Slow convergence

To deal with this problem:

I Choose optimal step size at each iteration ηt using line
search.

I Add momentum to the update.

w(t+1) = w(t) − η(t)g(t) + αt

(
w(t) − w(t−1)

)
I Use second order methods like Newton method to exploit

the curvature of the loss function. (But we need to compute
Hessian matrix.)

43

Multiclass Logistic or Softmax Regression

I Logistic regression can be extend for the multiclass case.

I Let yn ∈ {0, 1, . . . , k − 1}

I Define

P (yn = k|xn,W) =
exp(wᵀ

kxn)∑K
l=1 exp(wᵀ

kxnl
)

= µnk

∗ µnK : Probability that nth sample belongs to
kth class and

∑k
l=1 µnl

= 1

I Softmax: Class k with largest wᵀ
kxn dominates the

probability.

44

Multiclass Logistic or Softmax Regression

I P (yn = k|xn,W) =
exp(wᵀ

kxn)∑K
l=1 exp(w

ᵀ
kxn)

I W = [w1w2 . . . wk]D×K

I We can think of yn are drawn from multimodal distribution

P (y|X,W) =

N∏
n=1

K∏
l=1

µ
ynl
nl : Likelihood function

I where ynl = 1 if true class of example n is l and ynl = 0 for
all other l.

45

Hyperplane based classifiers and
Perceptron

Linear as Optimization

Supervised Learning Problem

I Given data {(xn, yn)}Nn=1 find f : X → Y that best
approximates the relation between X and Y .

I Determine f such a way that loss l(y, f(x)) is minimum.

I f and l are specific to the problem and the method that we
choose.

46

Linear Regression

I Data: {(xn, yn)}Nn=1
I xn ∈ RD is a D dimensional input
I yn ∈ R is the output

Aim is to find a hyperplane that fits best these points.
I Here hyperplane is a model of choice i.e.,

f(x) =

D∑
j=1

xjwj + b = wᵀx+ b

I Here w1, . . . , wd and b are model parameters
I Best is determined by some loss function

Loss(w) =

N∑
n=1

[yn − f(xn)]2

I Aim : Determine the model parameters that minimize the
loss. 47

Logistic Regression

Problem Set-Up

I Two class classification

I Instead of the exact labels estimate the probabilities of the
labels i.e.

Predict P (yn = 1|xn, w) = µn

P (yn = 0|xn, w) = 1− µn

I Here (xn, yn) is the input output pair.

48

Logistic Regression(Contd...)

Problem

Find a function f such that,

µ = f(xn)

Model

µn = f(xn) = σ(wᵀxn) =
1

1 + exp(−wᵀxn)

=
exp(wᵀxn)

1 + exp(wᵀxn)

49

Logistic Regression(Contd...)

Sigmoid Function

I Here σ(.) is the sigmoid function.

I The model first computes a real valued score
wᵀx =

∑D
i=1wixi and then nonlinearly “squashes” it

between (0,1) to turn into a probability.

50

Logistic Regression(contd...)

Loss Function: Here we use cross entropy loss instead of
squared loss.

Cross entropy loss is defined as:

L(yn, f(xn)) =

− log(µn) when yn = 1

− log(1− µn) when yn = 0

= −yn log(µn)− (1− yn) log(1− µn)

= −yn log(σ(wᵀxn))− (1− yn) log(1− σ(wᵀxn))

And now empirical risk is

L(w) = −
N∑
n=1

[ynw
ᵀxn − log(1 + exp(wᵀxn))]

51

Logistic Regression(contd...)

By taking the derivative w.r.t w

∂L

∂w
=

N∑
n=1

(µn − yn)xn

I Here the Gradient Descent Algorithm is
1 Initialize w(1) ∈ RD randomly
2 Iterate until the convergence

w(t+1)︸ ︷︷ ︸
New learned
parameter or

weights

= w(t)︸︷︷︸
previous

value

− η︸︷︷︸
Learning

rate

N∑
n=1

(µ(t)
n − yn)xn︸ ︷︷ ︸
Gradient at

previous value

I Note: Here µ(t) = σ(w(t)ᵀxn)

52

Logistic Regression (contd. . .)

Let us take a look at the update equation again

w(t+1)︸ ︷︷ ︸
New learned
parameter or

weights

= w(t)︸︷︷︸
previous

value

− η︸︷︷︸
Learning

rate

N∑
n=1

(µ(t)n − yn)xn︸ ︷︷ ︸
Gradient at

previous value

What do we notice here?

Problem: Calculating gradient in each iteration requires all the
data. When N is large this may not be feasible.

53

Stochastic Gradient Descent

I Strategy: Approximate gradient using randomly chosen
data point (xn, yn)

w(t+1) = w(t) − ηt(µ(t)n − yn)xn

.

I Also: Replace predicted label probability µ(t)n by predicted
binary label ŷ(t)n , where

ŷ(t)n =

1 if µ(t)n > 0.5 or w(t)ᵀxn > 0

0 if µ(t)n < 0.5 or w(t)ᵀxn < 0

54

Stochastic Gradient Descent (contd. . .)

I Hence: Update rule becomes

w(t+1) = w(t) − ηt(ŷ(t)n − yn)xn

I This is mistake driven update rule

I w(t) gets updated only when there is a misclassification i.e.
ŷ
(t)
n 6= yn

55

Stochastic Gradient Descent (contd. . .)

We will do one more simple change:

I Change: the class labels to {-1,+1}

=⇒ ŷ(t)n − yn =

−2yn if ŷ
(t)
n 6= y

(t)
n

0 if ŷ
(t)
n = y

(t)
n

I Hence: Whenever there is a misclassification.

w(t+1) = w(t) − 2η(t)ynxn

I =⇒ This is a perceptron learning algorithm which is a
hyperplane based learning algorithm.

56

Hyperplanes

I Separates a d-dimensional space into two half
spaces(positive and negative)

I Equation of the hyperplane is

wᵀx = 0

I By adding bias b ∈ R
wᵀx+ b = 0 b > 0 moving the

hyperplane parallely along w
b < 0 opposite direction

57

Hyperplane based classification

I Classification rule

y = sign(wᵀx+ b)

I

wᵀx+ b > 0 =⇒ y = +1

wᵀx+ b < 0 =⇒ y = −1

58

Hyperplane based classification

59

The Perceptron Algorithm (Rosenblatt, 1958)

I Aim is to learn a linear hyperplane to separate two classes.

I Mistake drives online learning algorithm

I Guaranteed to find a separating hyperplane if data is
linearly separable.

60

Perceptron Algorithm

I Given training data D = {(x1, y1), ..., (xn, yn)}

I Initialize wold = [0, ..., 0], bold = 0

I Repeat until convergence.

I For a random (xn, yn) ∈ D

I If yn(wᵀxn + b) ≤ 0

[Or sign(wᵀx+ b) 6= yn i.e mistake mode]

I wnew = wold + ynxn

I bnew = bold + yn

61

Perceptron Convergence Theorem (Block and Novikoff)

"Roughly" : If the data is linearly separable perceptron
algorithm converges.

62

What if the data is not linearly separable?

Yes! In practice, most often the data is not linearly separable.
Then

I Make linearly separable using kernel methods.

I (Or) Use multilayer perceptron.

What are all these?

I The first leads to Support Vector Machines, that rules
machine learning for decades

I The second one leads to Deep Learning!

63

What we learned?

I Maximum Likelihood Estimates

I Bayes again! MAP

I Probabilistic view of Linear and Logistic Regression

I Hyperplanes and Perceptrons

I The two very big paradigms in ML

64

	Probabilistic View of Linear Regression
	Logistic Regression
	Hyperplane based classifiers and Perceptron

