$MACHINE \ LEARNING {}_{\tt by \ ambed kar@IISc}$

- ▶ Unsupervised Learning
- ▶ Dimensionality Reduction
- ▶ K-means Clustering

WHAT IS UNSUPERVISED LEARNING

PRINCIPLE COMPONENT ANALYSIS AND DIMENSIONALITY DETECTION

CLUSTERING

What is Unsupervised Learning

▶ Input: A set of unlabeled examples, $\mathcal{D} = {\mathbf{x}_n}_{n=1}^N$

▶ Objective: Find *patterns* in observed data

 Challenge: Since there is no ground-truth or labels it is very difficult to evaluate the algorithms.

Unsupervised Learning

- Examples:
 - \blacktriangleright Clustering Grouping observed data into unlabeled clusters
 - ▶ identifying social circles, summarizing observed data etc.
 - Dimensionality Reduction Finding a low-dimensional representation of the data
 - ▶ visualization, compression, structure analysis etc.
 - ► Anomaly Detection Spotting outliers in the data
 - ▶ detecting fraudulent transactions, data cleaning etc.¹
 - **Density Estimation** Finding the underlying probability distribution from which \mathcal{D} has been sampled.

¹The discovery of Higgs Boson relied on one such algorithm

Principle Component Analysis and Dimensionality Detection

Dimensionality Reduction

- ▶ Input: A dataset $\mathcal{D} = {\mathbf{x}_n}_{n=1}^N$ where each $\mathbf{x}_n \in \mathbb{R}^d$
- ▶ **Objective:** Find a low-dimensional representation of each point $\tilde{\mathbf{x}}_n \in \mathbb{R}^k$ where k < d
- ▶ In other words: Find a *k*-dimensional coordinate system and represent all the points in this coordinate system
 - ▶ Need to find orthonormal vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K$ which form the basis of the new coordinate system
 - Need to way to represent the original points in this new coordinate system
- ▶ Main Question: How to choose the low dimensional space and embed the points in it?

Dimensionality Reduction - Applications

- Visualization: Find a 2 or 3 dimensional representation of data such that the essence of data is not lost
 - Visualizing financial profile of individuals in two dimensions to identify patterns
- Compression: Embed the points in a lower dimensional space such that various topological properties are preserved to optimize storage
 - Minimizing the number of colours needed to represent an image. Efficient encoding schemes can then be used for compression
- ► Feature Selection: Remove redundant or less informative features
 - Identifying and eliminating functionally related or highly correlated features like density, mass and volume

Dimensionality Reduction - Toy Example

- Given 7 points in two dimensions. Need 14 numbers to store x and y coordinates of all points
- ► Idea 1: Discard y coordinate of all points (green points). Only 7 numbers needed now. Lot of information lost.
- ► Idea 2: Discard x coordinate of all points (orange points). Only 7 numbers needed now. Better than green points.
- ► Idea 3: Save the slope of pink line and the x (or y) coordinate of each point. Need to store 8 numbers. No information lost.

Dimensionality Reduction - Toy Example

Dimensionality Reduction - Toy Example - Findings

- ▶ Simply discarding coordinates is not a good idea
- ▶ Not all ways of dimensionality reduction are equally good
- Need to quantify the amount of information lost while performing dimensionality reduction
- Real data is not as neat as the toy example, need a way to deal with noise
- ► Revised Objective: To find a k dimensional subspace of ℝ^d and linearly project data onto this subspace while minimizing the "loss of information"
 - Non-linear dimensionality reduction methods exist but are beyond the current scope
 - ▶ We will consider Principle Component Analysis (PCA)

Dimensionality Reduction - Principle Component Analysis

- \blacktriangleright Let $\mathbf{u} \in \mathbb{R}^d$ be a direction along which we want to project data
- ► Thus, $\tilde{\mathbf{x}}_n = (\mathbf{x}_n^{\mathsf{T}} \mathbf{u}) \mathbf{u}$. Note that one only needs to store $\mathbf{x}_n^{\mathsf{T}} \mathbf{u}$ for each n
- PCA uses variance in projected data as a measure of information
 - Information content is assumed to be proportional to variance of projected data
 - Need to retain maximum information, thus, need to find u such that variance of projected data is maximized

$$\mathbf{u}^* = \arg \max_{\mathbf{u}:||\mathbf{u}||=1} \operatorname{Var}(\{\tilde{\mathbf{x}}_n\}_{n=1}^N)$$

Dimensionality Reduction - PCA (contd...)

$$\operatorname{Var}(\{\tilde{\mathbf{x}}_n\}_{n=1}^N) = \frac{1}{N} \sum_{n=1}^N \left(\tilde{\mathbf{x}}_n^2 - \operatorname{E}[\tilde{\mathbf{x}}_n]^2\right)$$

- ► Assume WLOG that $E[\mathbf{x}_n] = \mathbf{0}$, thus $E[\tilde{\mathbf{x}}_n] = E[\mathbf{x}_n]^{\mathsf{T}}\mathbf{u} = 0$
- Also, $\tilde{\mathbf{x}}_n^2 = \mathbf{u}^{\mathsf{T}} \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}} \mathbf{u}$, thus we get:

$$\sum_{n=1}^{N} \left(\tilde{\mathbf{x}}_{n}^{2} - \mathbf{E}[\tilde{\mathbf{x}}_{n}]^{2} \right) = \mathbf{u}^{\mathsf{T}} \left(\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} \right) \mathbf{u}$$

▶ Note that $\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}}$ is the covariance matrix **X** of observed data since $\mathbf{E}[\mathbf{x}_n] = \mathbf{0}$. Thus:

$$\operatorname{Var}(\{\tilde{\mathbf{x}}_n\}_{n=1}^N) = \frac{1}{N} \mathbf{u}^{\mathsf{T}} \mathbf{X} \mathbf{u}$$

Dimensionality Reduction - PCA (contd...)

The constant can be dropped for the purpose of optimization. Hence the optimization problem becomes:

$$\mathbf{u}^* = \arg \max_{\mathbf{u}:||\mathbf{u}||=1} \mathbf{u}^\mathsf{T} \mathbf{X} \mathbf{u}$$

 This is a constrained optimization problem, the Lagrangian is given by:

$$\mathcal{L}(\mathbf{u}, \mu) = \mathbf{u}^{\mathsf{T}} \mathbf{X} \mathbf{u} + \mu(\mathbf{u}^{\mathsf{T}} \mathbf{u} - 1)$$
$$\nabla_{\mathbf{u}} \mathcal{L} = 0 \Rightarrow 2\mathbf{X} \mathbf{u} + 2\mu \mathbf{u} = 0$$
$$\Rightarrow \mathbf{X} \mathbf{u} = -\mu \mathbf{u}$$

► Thus, the optimal u must be an eigenvector of X. Since we want to maximize u^TXu, u must be the eigenvector corresponding to largest eigenvalue. Hence:

 $\mathbf{u}^* =$ eigenvector of \mathbf{X} corresponding to largest eigenvalue 12

Dimensionality Reduction - PCA (contd...)

- ► Usually k > 1 thus we want to find u₁, u₂, ..., u_k and not just u^{*}
- Setting $\mathbf{u}_1 = \mathbf{u}^*$, one can find \mathbf{u}_2 as follows:

$$\mathbf{u}_2 = \arg \max_{\mathbf{u}:||\mathbf{u}||=1,\mathbf{u}^{\mathsf{T}}\mathbf{u}_1=0} \mathbf{u}^{\mathsf{T}} \mathbf{X} \mathbf{u}$$

- ▶ $\mathbf{u}^{\mathsf{T}}\mathbf{u}_1 = 0$ is needed to avoid correlations in projected data
- ► One can show that u₂ is the eigenvector of X corresponding to second largest eigenvalue
- ► Similarly u₁, u₂, ..., u_k are the eigenvectors of X corresponding to k largest eigenvalues. Also:

$$\tilde{\mathbf{x}}_n = \mathbf{U}^\mathsf{T} \mathbf{x}_n$$

where, $\mathbf{U} \in \mathbb{R}^{d \times k}$ is a matrix containing $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ in its columns

Algorithm 1 Principle Component Analysis

Input: Dataset $\mathcal{D} = {\mathbf{x}_n}_{n=1}^N$ and number of dimensions k**Output:** Low dimensional vectors $\tilde{\mathcal{D}} = {\tilde{\mathbf{x}}_n}_{n=1}^N$ Normalize the data so that it is zero mean Compute $\mathbf{X} = \sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}}$ Find $\mathbf{U} \in \mathbb{R}^{d \times k}$ containing top k eigenvectors of \mathbf{X} as columns Compute $\tilde{\mathbf{x}}_n \in \mathbb{R}^k$ such that $\tilde{\mathbf{x}}_n = \mathbf{U}^{\mathsf{T}} \mathbf{x}_n$, for all $n = 1, \dots, N$

PCA Example

PCA Example

Clustering

Clustering

- ► Input: Data points D = {x_n}^N_{n=1}, a similarity/distance function d(., .) defined on elements of D and the number of clusters K
- Objective: *Partition* the given N points into K subsets C_1, C_2, \ldots, C_K such that:
 - $\mathbf{C}_k \subset \mathcal{D}, \, \mathbf{C}_j \neq \Phi \text{ for all } k = 1, \dots, K$
 - $\mathbf{C}_i \cap \mathbf{C}_j = \Phi$ for all $i, j = 1, \dots, k, i \neq j$
 - $\blacktriangleright \cup_{k=1}^{K} \mathbf{C}_{j} = \mathcal{D}$
 - ▶ Points in the same cluster are more similar than points across clusters (w.r.t. d(., .))
- Variants that allow fractional membership of points to clusters or overlapping clusters exist but we will assume that each point belongs to exactly one cluster

Clustering (contd...)

	$\mathbf{x}^{(i)}$	d(., .)	Clusters
Eye Gaze Tracker	(x, y) coordinate on screen where user is looking	Euclidean distance	Hot-spots on screen
Social Media	A binary vector indicating friends of person <i>i</i>	$\frac{1}{\#\text{common friends}}$	Friendship groups
Docu- ments	Bag of words representation of document i	$\frac{1}{\#\text{common words}}$	Topics
Biology	Genes	Task dependent	Gene expression patterns

TABLE 1: Some examples related to clustering

Clustering - Approaches

- ► Agglomerative (bottom-up) vs Divisive (top-down)
- Monothetic (considers features sequentially) vs
 Polythetic (considers features all at once)
- ► Hard (single cluster membership) vs Fuzzy (mixed memberships allowed)
- Hierarchical (creates hierarchy) vs Partitional (disjoint, unordered clusters)

Any clustering algorithm can be classified based on this scheme

Example: We will see that k-Means is a polythetic, hard and partitional clustering algorithm

Clustering - Toy Example

Data

Hard Clustering

Fuzzy Clustering

Clustering is an exploratory data analysis problem.

There is no single "correct" solution.

Hierarchical Clustering

Clustering - Popular Algorithms

- ▶ **k-Means** and k-Medoids
- Spectral clustering
- ▶ Expectation Maximization for Gaussian Mixture Models
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- \blacktriangleright etc.

Clustering - k-Means

- ▶ Let C denote the set of all possible cluster assignment for the given dataset D
- ▶ $\mathbf{c} \in \mathcal{C}$ is such that $\mathbf{c} \in \{1, \dots, k\}^m$, where $\mathbf{c}_i = j$ iff $\mathbf{x}^{(i)} \in \mathbf{C}_j$. Recall that:
 - k is the number of clusters
 - m is the number of data points
 - \mathbf{C}_j is the j^{th} cluster
- ▶ Ideally one would like to solve the following problem:

$$\mathbf{c}^* = \arg\min_{\mathbf{c}\in\mathcal{C}} \sum_{j=1}^k \sum_{i_1,i_2=1}^m \mathbf{1}\{\mathbf{c}_{i_1} = j, \mathbf{c}_{i_2} = j\} ||\mathbf{x}^{(i_1)} - \mathbf{x}^{(i_2)}||^2,$$

i.e. minimize the distance between points in same cluster

 This optimization is NP hard so k-Means clustering solves a relaxed version of this problem

Clustering - k-Means (contd...)

Algorithm 2 k-Means Clustering Algorithm

Input: Dataset $\mathcal{D} = {\mathbf{x}^{(i)}}_{i=1}^{m}$ and number of clusters kOutput: Cluster assignment vector $\mathbf{c} \in {\{1, \ldots, k\}}^{m}$, cluster centers μ_1, \ldots, μ_k Initialize μ_1, \ldots, μ_k by randomly choosing k distinct points from \mathcal{D}

\mathbf{repeat}

Set
$$\mathbf{c}_i = \arg\min_j ||\mathbf{x}^{(i)} - \mu_j||^2$$
 for $i = 1, 2, \dots, m$
Set $\mu_j = \frac{1}{|\{i:\mathbf{c}_i=j\}|} \sum_{i=1}^m \mathbf{1}\{\mathbf{c}_i=j\} \mathbf{x}^{(i)}$ for all $j = 1, 2, \dots, k$
until convergence

Breaks the optimization problem into two parts

- Optimization over memberships **c** keeping μ_1, \ldots, μ_k fixed
- Optimization over cluster centers μ_1, \ldots, μ_k keeping c fixed ²³

Clustering - k-Means (contd...)

²Image Source: Andrew Ng. CS-229 Lecture Notes

Clustering - k-Means (contd...)

Limitations of k-Means:

- Not suitable for non-spherical clusters because of the use of Euclidean distance
 - ▶ Transform data appropriately before performing k-Means (as we will see later for spectral clustering) or use kernel k-Means
- ▶ Not robust to outliers because of the use of arithmetic mean
 - ▶ Remove outliers before clustering
- ▶ Susceptible to sub-optimal solutions
 - Run the algorithm multiple times with random initializations