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What is Unsupervised Learning




Unsupervised Learning

» Input: A set of unlabeled examples, D = {x, }\_,

» Objective: Find patterns in observed data

» Challenge: Since there is no ground-truth or labels it is
very difficult to evaluate the algorithms.



Unsupervised Learning

» Examples:
» Clustering - Grouping observed data into unlabeled clusters

» identifying social circles, summarizing observed data etc.

» Dimensionality Reduction - Finding a low-dimensional
representation of the data

» visualization, compression, structure analysis etc.

» Anomaly Detection - Spotting outliers in the data

» detecting fraudulent transactions, data cleaning etc.'

» Density Estimation - Finding the underlying probability
distribution from which D has been sampled.

!The discovery of Higgs Boson relied on one such algorithm



Principle Component Analysis
and Dimensionality Detection




Dimensionality Reduction

» Input: A dataset D = {x,}Y_, where each x,, € R?

» Objective: Find a low-dimensional representation of each
point %X, € RF where k < d

» In other words: Find a k-dimensional coordinate system
and represent all the points in this coordinate system
» Need to find orthonormal vectors vy, vs, ..., vk which form
the basis of the new coordinate system

» Need to way to represent the original points in this new
coordinate system

» Main Question: How to choose the low dimensional space

and embed the points in it?



Dimensionality Reduction - Applications

» Visualization: Find a 2 or 3 dimensional representation of
data such that the essence of data is not lost
» Visualizing financial profile of individuals in two dimensions
to identify patterns

» Compression: Embed the points in a lower dimensional
space such that various topological properties are preserved
to optimize storage

» Minimizing the number of colours needed to represent an
image. Efficient encoding schemes can then be used for

compression

» Feature Selection: Remove redundant or less informative
features
» Identifying and eliminating functionally related or highly
correlated features like density, mass and volume



Dimensionality Reduction - Toy Example

» Given 7 points in two dimensions. Need 14 numbers to
store & and y coordinates of all points

» Idea 1: Discard y coordinate of all points (green points).

Only 7 numbers needed now. Lot of information lost.

» Idea 2: Discard = coordinate of all points (orange points).
Only 7 numbers needed now. Better than green points.

» Idea 3: Save the slope of pink line and the z (or y)
coordinate of each point. Need to store 8 numbers. No

information lost.



Dimensionality Reduction - Toy Example




Dimensionality Reduction - Toy Example - Findings

» Simply discarding coordinates is not a good idea

» Not all ways of dimensionality reduction are equally good

» Need to quantify the amount of information lost while
performing dimensionality reduction

» Real data is not as neat as the toy example, need a way to
deal with noise

» Revised Objective: To find a k dimensional subspace of
R? and linearly project data onto this subspace while
minimizing the “loss of information”

» Non-linear dimensionality reduction methods exist but are

beyond the current scope
» We will consider Principle Component Analysis (PCA)



Dimensionality Reduction - Principle Component Analysis

» Let u € R? be a direction along which we want to project
data

» Thus, X, = (x,Tu)u. Note that one only needs to store
x,Tu for each n
» PCA uses variance in projected data as a measure of
information
» Information content is assumed to be proportional to
variance of projected data
» Need to retain maximum information, thus, need to find u

such that variance of projected data is maximized

u* =arg max Var({x,})_;)
wf|uf|=1
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Dimensionality Reduction - PCA (contd...)

Var({%,}h_,) = % i (ii - E[i”F)

n=1
» Assume WLOG that E[x,] = 0, thus E[x,] = E[x,]Tu=0

» Also, X2 = uTx,xu, thus we get:

Z (ii — E[in]2> = uT(zzlxnx,TJu

n=1

» Note that 27]:[:1 X, X}, is the covariance matrix X of
observed data since E[x,] = 0. Thus:

1
Var({%,}N_)) = NuTXu
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Dimensionality Reduction - PCA (contd...)

» The constant can be dropped for the purpose of

optimization. Hence the optimization problem becomes:

u* = arg max u'Xu
u:|[uf|=1

» This is a constrained optimization problem, the Lagrangian
is given by:
L(u,p) =u"Xu+ p(uTu—1)
Vul =0=2Xu+2pu=0
= Xu=—puu

» Thus, the optimal u must be an eigenvector of X. Since we
want to maximize u'Xu, u must be the eigenvector
corresponding to largest eigenvalue. Hence:

u* = eigenvector of X corresponding to largest eigenvalue
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Dimensionality Reduction - PCA (contd...)

Usually k£ > 1 thus we want to find ui, us,...,u; and not
just u*

Setting u; = u*, one can find us as follows:

— T
U = arg MaXy||u/|=1,utu; =o' XU

uTu; = 0 is needed to avoid correlations in projected data
One can show that uy is the eigenvector of X corresponding
to second largest eigenvalue

Similarly uy, us, ..., u, are the eigenvectors of X
corresponding to k largest eigenvalues. Also:

%, = UTx,

where, U € R¥* is a matrix containing uj, us, ..., uy, in its

columns
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Dimensionality Reduction - PCA (contd...)

Algorithm 1 Principle Component Analysis

Input: Dataset D = {x,}_; and number of dimensions k
Output: Low dimensional vectors D = {%,}N_,

Normalize the data so that it is zero mean

Compute X = Ziv:l XpXh

Find U € R¥* containing top k eigenvectors of X as columns
Compute x,, € R* such that %, = UTx,, foralln =1,... N
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PCA Example
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Clustering




Clustering

» Input: Data points D = {x,})_;, a similarity /distance
function d(., .) defined on elements of D and the number of

clusters K
» Objective: Partition the given N points into K subsets
C1,C,,...,Cg such that:
CLCD,Cj#dforallk=1,... K
CnNCj=>dforalli,j=1,...,k i#]
Uk ,C; =D

Points in the same cluster are more similar than points

v

v

v

v

across clusters (w.r.t. d(., .))

» Variants that allow fractional membership of points to
clusters or overlapping clusters exist but we will assume

that each point belongs to exactly one cluster
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Clustering (contd...)

O

(., .) Clusters
Eye (x,y) coordinate
. . Hot-spots on
Gaze on screen where Fuclidean distance
screen
Tracker|  user is looking
. A binary vector . .
Social o ) Friendship
Medi indicating friends Feommon Triends
edia roups
of person i sroup
Bag of words
Docu- ) 1 )
ments representation of Zcommon words Topics
document 4
Gene
Biology Genes Task dependent expression
patterns

TABLE 1: Some examples related to clustering
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Clustering - Approaches

» Agglomerative (bottom-up) vs Divisive (top-down)

» Monothetic (considers features sequentially) vs
Polythetic (considers features all at once)

» Hard (single cluster membership) vs Fuzzy (mixed
memberships allowed)

» Hierarchical (creates hierarchy) vs Partitional (disjoint,

unordered clusters)

Any clustering algorithm can be classified based on this scheme

Example: We will see that k-Means is a polythetic, hard and

partitional clustering algorithm
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Clustering - Toy Example

A h
[ ®
o° o°
L ®

@ @
... ...

@ (]
% () ®e

Data Hard Clustering

Clustering is an exploratory data anal-

ysis problem.

There is no single “correct” solution.

Fuzzy Clustering

A

oo
) @

3

>

Hierarchical

Clustering 20



Clustering - Popular Algorithms

v

k-Means and k-Medoids

v

Spectral clustering

v

Expectation Maximization for Gaussian Mixture Models

v

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

» ctc.
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Clustering - k-Means

» Let C denote the set of all possible cluster assignment for
the given dataset D

» c € C is such that c € {1,...,k}™, where c; = j iff
x(0) ¢ C;. Recall that:

» k is the number of clusters
» m is the number of data points
» C; is the j' cluster

» Ideally one would like to solve the following problem:

k m
= orgmin D D Aen =g =H <
i.e. minimize the distance between points in same cluster
» This optimization is NP hard so k-Means clustering solves a
relaxed version of this problem
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Clustering - k-Means (contd. . .)

Algorithm 2 k-Means Clustering Algorithm

Input: Dataset D = {x(}™ and number of clusters &

Output: Cluster assignment vector ¢ € {1,...k}"™, cluster
centers fi1, ..., Uk
Initialize p1,...,ur by randomly choosing k distinct points
from D
repeat

Set ¢; = argmin; |[x(*) — p;|[? fori =1,2,...,m

Set p; = m S e = j}x® forall j =1,2,....k

until convergence

Breaks the optimization problem into two parts

» Optimization over memberships ¢ keeping p1, . . ., u fixed

» Optimization over cluster centers p, ..., u keeping c fixed 23



Clustering - k-Means (contd...)
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Clustering - k-Means (contd. . .)

Limitations of k-Means:

» Not suitable for non-spherical clusters because of the use of
Euclidean distance

» Transform data appropriately before performing k-Means
(as we will see later for spectral clustering) or use kernel
k-Means

» Not robust to outliers because of the use of arithmetic mean

» Remove outliers before clustering

» Susceptible to sub-optimal solutions
» Run the algorithm multiple times with random

initializations
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