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What is Unsupervised Learning



Unsupervised Learning

I Input: A set of unlabeled examples, D = {xn}Nn=1

I Objective: Find patterns in observed data

I Challenge: Since there is no ground-truth or labels it is
very difficult to evaluate the algorithms.
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Unsupervised Learning

I Examples:
I Clustering - Grouping observed data into unlabeled clusters

I identifying social circles, summarizing observed data etc.

I Dimensionality Reduction - Finding a low-dimensional
representation of the data

I visualization, compression, structure analysis etc.

I Anomaly Detection - Spotting outliers in the data
I detecting fraudulent transactions, data cleaning etc.1

I Density Estimation - Finding the underlying probability
distribution from which D has been sampled.

1The discovery of Higgs Boson relied on one such algorithm
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Principle Component Analysis
and Dimensionality Detection



Dimensionality Reduction

I Input: A dataset D = {xn}Nn=1 where each xn ∈ Rd

I Objective: Find a low-dimensional representation of each
point x̃n ∈ Rk where k < d

I In other words: Find a k-dimensional coordinate system
and represent all the points in this coordinate system

I Need to find orthonormal vectors v1,v2, . . . ,vK which form
the basis of the new coordinate system

I Need to way to represent the original points in this new
coordinate system

I Main Question: How to choose the low dimensional space
and embed the points in it?
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Dimensionality Reduction - Applications

I Visualization: Find a 2 or 3 dimensional representation of
data such that the essence of data is not lost

I Visualizing financial profile of individuals in two dimensions
to identify patterns

I Compression: Embed the points in a lower dimensional
space such that various topological properties are preserved
to optimize storage

I Minimizing the number of colours needed to represent an
image. Efficient encoding schemes can then be used for
compression

I Feature Selection: Remove redundant or less informative
features

I Identifying and eliminating functionally related or highly
correlated features like density, mass and volume 6



Dimensionality Reduction - Toy Example

I Given 7 points in two dimensions. Need 14 numbers to
store x and y coordinates of all points

I Idea 1: Discard y coordinate of all points (green points).
Only 7 numbers needed now. Lot of information lost.

I Idea 2: Discard x coordinate of all points (orange points).
Only 7 numbers needed now. Better than green points.

I Idea 3: Save the slope of pink line and the x (or y)
coordinate of each point. Need to store 8 numbers. No
information lost.
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Dimensionality Reduction - Toy Example
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Dimensionality Reduction - Toy Example - Findings

I Simply discarding coordinates is not a good idea
I Not all ways of dimensionality reduction are equally good
I Need to quantify the amount of information lost while

performing dimensionality reduction
I Real data is not as neat as the toy example, need a way to

deal with noise

I Revised Objective: To find a k dimensional subspace of
Rd and linearly project data onto this subspace while
minimizing the “loss of information”

I Non-linear dimensionality reduction methods exist but are
beyond the current scope

I We will consider Principle Component Analysis (PCA)
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Dimensionality Reduction - Principle Component Analysis

I Let u ∈ Rd be a direction along which we want to project
data

I Thus, x̃n = (xn
ᵀu)u. Note that one only needs to store

xn
ᵀu for each n

I PCA uses variance in projected data as a measure of
information

I Information content is assumed to be proportional to
variance of projected data

I Need to retain maximum information, thus, need to find u

such that variance of projected data is maximized

u∗ = arg max
u:||u||=1

Var({x̃n}Nn=1)
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Dimensionality Reduction - PCA (contd. . . )

Var({x̃n}Nn=1) =
1

N

N∑
n=1

(
x̃2
n − E[x̃n]2

)
I Assume WLOG that E[xn] = 0, thus E[x̃n] = E[xn]ᵀu = 0

I Also, x̃2
n = uᵀxnx

ᵀ
nu, thus we get:

N∑
n=1

(
x̃2
n − E[x̃n]2

)
= uᵀ

( N∑
n=1

xnx
ᵀ
n

)
u

I Note that
∑N

n=1 xnx
ᵀ
n is the covariance matrix X of

observed data since E[xn] = 0. Thus:

Var({x̃n}Nn=1) =
1

N
uᵀXu
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Dimensionality Reduction - PCA (contd. . . )

I The constant can be dropped for the purpose of
optimization. Hence the optimization problem becomes:

u∗ = arg max
u:||u||=1

uᵀXu

I This is a constrained optimization problem, the Lagrangian
is given by:

L(u, µ) = uᵀXu + µ(uᵀu− 1)

∇uL = 0⇒ 2Xu + 2µu = 0

⇒ Xu = −µu
I Thus, the optimal u must be an eigenvector of X. Since we

want to maximize uᵀXu, u must be the eigenvector
corresponding to largest eigenvalue. Hence:

u∗ = eigenvector of X corresponding to largest eigenvalue 12



Dimensionality Reduction - PCA (contd. . . )

I Usually k > 1 thus we want to find u1,u2, . . . ,uk and not
just u∗

I Setting u1 = u∗, one can find u2 as follows:

u2 = arg maxu:||u||=1,uᵀu1=0u
ᵀXu

I uᵀu1 = 0 is needed to avoid correlations in projected data
I One can show that u2 is the eigenvector of X corresponding

to second largest eigenvalue
I Similarly u1,u2, . . . ,uk are the eigenvectors of X

corresponding to k largest eigenvalues. Also:

x̃n = Uᵀxn

where, U ∈ Rd×k is a matrix containing u1,u2, . . . ,uk in its
columns
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Dimensionality Reduction - PCA (contd. . . )

Algorithm 1 Principle Component Analysis

Input: Dataset D = {xn}Nn=1 and number of dimensions k
Output: Low dimensional vectors D̃ = {x̃n}Nn=1

Normalize the data so that it is zero mean
Compute X =

∑N
n=1 xnx

ᵀ
n

Find U ∈ Rd×k containing top k eigenvectors of X as columns
Compute x̃n ∈ Rk such that x̃n = Uᵀxn, for all n = 1, . . . , N
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PCA Example
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PCA Example
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Clustering



Clustering

I Input: Data points D = {xn}Nn=1, a similarity/distance
function d(. , .) defined on elements of D and the number of
clusters K

I Objective: Partition the given N points into K subsets
C1,C2, . . . ,CK such that:

I Ck ⊂ D, Cj 6= Φ for all k = 1, . . . ,K
I Ci ∩Cj = Φ for all i, j = 1, . . . , k, i 6= j
I ∪Kk=1Cj = D
I Points in the same cluster are more similar than points

across clusters (w.r.t. d(. , .))

I Variants that allow fractional membership of points to
clusters or overlapping clusters exist but we will assume
that each point belongs to exactly one cluster
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Clustering (contd. . . )

x(i) d(. , .) Clusters
Eye
Gaze
Tracker

(x, y) coordinate
on screen where
user is looking

Euclidean distance
Hot-spots on

screen

Social
Media

A binary vector
indicating friends

of person i

1
#common friends

Friendship
groups

Docu-
ments

Bag of words
representation of

document i

1
#common words Topics

Biology Genes Task dependent
Gene

expression
patterns

Table 1: Some examples related to clustering
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Clustering - Approaches

I Agglomerative (bottom-up) vs Divisive (top-down)
I Monothetic (considers features sequentially) vs

Polythetic (considers features all at once)
I Hard (single cluster membership) vs Fuzzy (mixed

memberships allowed)
I Hierarchical (creates hierarchy) vs Partitional (disjoint,

unordered clusters)

Any clustering algorithm can be classified based on this scheme

Example: We will see that k-Means is a polythetic, hard and
partitional clustering algorithm
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Clustering - Toy Example

Data Hard Clustering Fuzzy Clustering

Clustering is an exploratory data anal-
ysis problem.
There is no single “correct” solution.

Hierarchical
Clustering 20



Clustering - Popular Algorithms

I k-Means and k-Medoids

I Spectral clustering

I Expectation Maximization for Gaussian Mixture Models

I Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

I etc.
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Clustering - k-Means

I Let C denote the set of all possible cluster assignment for
the given dataset D

I c ∈ C is such that c ∈ {1, . . . , k}m, where ci = j iff
x(i) ∈ Cj . Recall that:

I k is the number of clusters
I m is the number of data points
I Cj is the jth cluster

I Ideally one would like to solve the following problem:

c∗ = arg min
c∈C

k∑
j=1

m∑
i1,i2=1

1{ci1 = j, ci2 = j}||x(i1) − x(i2)||2,

i.e. minimize the distance between points in same cluster
I This optimization is NP hard so k-Means clustering solves a

relaxed version of this problem
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Clustering - k-Means (contd. . . )

Algorithm 2 k-Means Clustering Algorithm

Input: Dataset D = {x(i)}mi=1 and number of clusters k
Output: Cluster assignment vector c ∈ {1, . . . k}m, cluster
centers µ1, . . . , µk
Initialize µ1, . . . , µk by randomly choosing k distinct points
from D
repeat

Set ci = arg minj ||x(i) − µj ||2 for i = 1, 2, . . . ,m

Set µj = 1
|{i:ci=j}|

∑m
i=1 1{ci = j}x(i) for all j = 1, 2, . . . , k

until convergence

Breaks the optimization problem into two parts

I Optimization over memberships c keeping µ1, . . . , µk fixed
I Optimization over cluster centers µ1, . . . , µk keeping c fixed

It can be shown that this procedure leads to a local minima for
the optimization problem mentioned earlier
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Clustering - k-Means (contd. . . )

k-Means on a toy dataset2

2Image Source: Andrew Ng, CS-229 Lecture Notes
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Clustering - k-Means (contd. . . )

Limitations of k-Means:

I Not suitable for non-spherical clusters because of the use of
Euclidean distance

I Transform data appropriately before performing k-Means
(as we will see later for spectral clustering) or use kernel
k-Means

I Not robust to outliers because of the use of arithmetic mean
I Remove outliers before clustering

I Susceptible to sub-optimal solutions
I Run the algorithm multiple times with random

initializations
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