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I Spectral Clustering



Spectral Methods



What is....?

What are spectral methods?

I Underlying objects in a problem can be represented as
matrices

I Eigenvalues and eigenvectors of these matrices become clue
to a solution.

What are eigenvalues and vectors?

I λ ∈ C is said to be an eigenvalue of n× n matrix M if it
satisfies Mv = λv for v 6= 0.

I v said to be eigenvector of M corresponding to λ.
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Can eigenvalues and eigenvectors make a person rich?

I Yes!

I Google page rank algorithm

I Must read: (K. Bryan and T. Leise, $25,000,000,000
Eigenvector: The Linear Algebra behind Google, SIAM review,
2006)
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Human Brain

Credit:Christiaan Vermeleun, www.td.org.
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Human Brain

I Possibly the most complex
network known to man

I 100 billion neurons (nodes)

I 100 trillion connections (edges)

I How can we go about making
sense of all this?
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Understanding Human Brain

Credit:Stam et. al, "The organization of physiological brain networks.", Clinical neurophysiology 2012

I One viewpoint: Study the brain from a network science
perspective.

I Model the structural/functional connectivity of brain
regions as "Brain Networks"1.

I Lot of data to work with: fMRI, EEG, MEG etc.
1Park and Friston, Science, 2013
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Brain Networks: Community Structure

Credit:Sporns, 2013

I A common property of Brain
Networks is segregation of
neurons based on anatomical or
functional characteristicsa

I In graph theory framework, this
community structure can be
studied with cluster analysis.

a(Sporns, 2013)
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Clustering over Brain Networks

Credit2

I A: Functional coactivation network - Different ’Functional’
Clusters

I B, C: Red Nodes represent the ’hub’ nodes in the network
2Crossley et al. "Cognitive relevance of the community structure of the

human brain functional coactivation network." PNAS (2013)
8



Clustering over Networks: Applications

I Image segmentation

I Market segmentation in consumer/business networks

I Detection of Terrorist Groups in Online Social Networks

I Epidemic spreading on networks
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Graph Partitioning3

Objective:

I High connectivity within clusters

I Few edges across clusters (small
cut)

I Balanced partitions

Applications:

Network Data Image
partitioning clustering segmentation

3Drawings and pictures are borrowed from Debarghya
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Spectral Graph partitioning4

Input Graph Good balanced cut

(Normalized) Find k dominant Run k-means
Adjacency matrix eigenvectors on rows

4Drawings and pictures are borrowed from Debarghya
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Spectral Graph partitioning 5

Input Graph Good balanced cut

(Normalized) Find k dominant Run k-means
Adjacency matrix eigenvectors on rows

5Drawings and pictures borrowed from Debarghya
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A quick LA recall

M a real valued n× n matrix.

I λ ∈ C is said to be eigenvalue of M if it satisfies Mv = λv

for v 6= 0. v said to be eigenvector of M.
I Spectrum of M is the set of eigenvalues along with their

multiplicities.

M a real valued n× n symmetric matrix

I If u, v are eigenvectors of distinct eigenvalues then u and v
are orthogonal.

I Eigenvalues of M are real
I M is diagonalizable (there exists an invertible matrix P

such that P−1MP is diagonal)
I There exists L such that LLT = LTL = I such that LALT

is diagonal.
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Some matrices related to graphs

Let G = (V,E) be a graph. |V | = n and |E| = e.

I Adjacency Matrix: A ∈ Rn×n such that

Aij =



0 if i = j,

1 if (i, j) ∈ E,

0 if (i, j) /∈ E.

I Degree Matrix: D ∈ Rn×n is diagonal matrix such that
Dii = deg(i)

I Incidence Matrix: B ∈ Rn×e, where rows indexed by
vertices and columns indexed by edges and Bij = 1 if vertex
i lies on edge j.

I Laplacian Matrix: L ∈ Rn×n is defined as L = D −A
I Normalized Laplacian: L ∈ Rn×n is defined as
L = I −D−1/2AD−1/2
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Graph Laplacian

Let G = (V,E) be a graph. |V | = n and |E| = e. Laplacian:
L ∈ Rn×n such that

Lij =



di if i = j,

−1 if (i, j) ∈ E,

0 if (i, j) /∈ E.

Theorem
Let λ1 ≤ λ2 ≤ . . . ≤ λn be eigenvalues of L. Then

1 L is symmetric and positive semidefinite

2 λ1 = 0

3 λ2 > 0 iff G is connected

4 λk = 0 and λk+1 > 0 iff G has exactly k-disjoint
components
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Cuts

Let G = (V,E) be a graph. |V | = n and |E| = e. Let V1 ⊂ V .
Boundary: The boundary of V1 is defined as

δV1 = {(i, j) ∈ E : i ∈ V1 and j /∈ V1}

I Cut:
Cut(V1) = |δV1|

I Expansion Cut

ExpansionCut(V1, V − V1) =
|δV1|

min{|V1|, |V − V1|}

I Ratio Cut:

RatioCut(V1, V − V1) =
|δV1|
|V1|

+
|δV1|
|V − V1| 16
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Metrics for partitioning

Let G = (V,E) be a graph. |V | = n and |E| = e. Let V1 ⊂ V .
Boundary: The boundary of V1 is defined as

δV1 = {(i, j) ∈ E : i ∈ V1 and j /∈ V1}

I Edge Expansion:

φG = min
|V1|≤ |V |2

|δV1|
|V1|

I Ratio Cut:

ηG = min
|V1|≤ |V |2

|δV1|
|V1|

+
|δV1|
|V − V1|
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A simple calculation of xTLx

xTLx = xTDx− xTAx

=

n∑
i=1

dix
2
i −

n∑
i,j=1

Aijxixj

=

n∑
i=1

dix
2
i −

∑
(i,j)∈E

xixj + xjxi

=
∑

(i,j)∈E

(x2i + x2j )−
∑

(i,j)∈E

xixj + xjxi

=
∑

(i,j)∈E

(xi − xj)2
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Rayleigh Principle or Courant-Fisher Theorem

Theorem
Let M be a symmetric matrix and let θ1 ≤ θ2 ≤ . . . ≤ θn be
eigenvalues of M . Then

θk = max
n−k+1 dim T

min
x∈T,x6=0

xTMx

xTx

Theorem
Let L be the Laplacian of a graph G = (V,E). Then

λ2 = min
x⊥1

xTMx

xTx
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Cheeger’s Inequality

Definition (Cheeger’s Constant)
Let G = (V,E) be a graph and consider a graph bisection
problem. Then

φG = min
|V1|≤n

2

|δV1|
|V1|

Theorem (Cheeger’s Inequality)
Let dmax denote the maximum degree of G and λ2 be the
second smallest eigenvalue of the Laplacian L of G. Then

λ2
2
≤ φG ≤

√
2λ2dmax

Note: Look at proofs of Mohar and Spielman
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Cheeger’s Inequality (Contd...)

Definition (Cheeger’s Constant)
Let G = (V,E) be a graph and consider a graph bisection
problem. Then

φG = min
|V1|≤n

2

|δV1|
|V1|

Theorem (Cheeger’s Inequality)
Let dmax denote the maximum degree of G and λ2 be the
second smallest eigenvalue of the Laplacian L of G. Then

2φG ≤ λ2 ≤
φG

2

2

Note: Look at proofs of Mohar and Spielman
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Graph Bisection

Recall Ratio Cut:

RCut(V1, V
c
1 ) =

|δV1|
|V1|

+
|δV1|
|V c

1 |
A simple calculation shall give us this:

Define y ∈ Rn as

yi =


√

|V c
1 |

|V1||V | if i ∈ V1,

−
√

|V1|
|V1||V | if i /∈ V1.

(1)

Then
yTLy = Rcut(V1, V

c
1 )

Let say Y∗ as subset of Rn denote various y defined as in (*) for
various subsets of V1 of V .

22
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Graph Bisection (contd..)

Objective:
min
y∈Y∗

yTLy

Trivial Relaxation:
min
y∈Rn

yTLy

Not very useful as 1TL1 = 0

Nice Relaxation:

Since yT 1 =
∑

i∈V yi = 0, y is orthogonal to 1. Also since
yT y =

∑
i∈V y

2
i = 1, y is a unit norm vector. Hence the relaxed

problem can be

min
y⊥1

yTLy

yT y 23
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yT y =

∑
i∈V y

2
i = 1, y is a unit norm vector. Hence the relaxed

problem can be

min
y⊥1

yTLy

yT y 23



Graph k-way partitioning

Ratio Cut:

Rcut(V1, . . . , Vk) =

k∑
`=1

|δV`|
|V`|

Lets define Y : Define y ∈ Rn×k such that

Yi` =


1√
|V`|

if i ∈ V`,

0 otherwise.

(**)

Claim: Y TY = I

Claim: Rcut(V1, . . . , Vk) = Trace(Y TLY )
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Graph k-way partitioning

I Objective

min
Y ∈Y∗∗

Trace(Y TLY )

I Relaxation

min
Y ∈Rn

Y T Y =I

Trace(Y TLY )

I Optimal Value
Y opt = [v1 . . . vk]

matrix of k leading orthonormal eigenvectors of L
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With Normaized Cuts

Normalized Cut:

Ncut(V1, . . . , Vk) =

k∑
`=1

|δV`|
Vol(V`)

where Vol(V`) =
∑

i∈V`
deg(i)

Lets define Y again: Define y ∈ Rn×k such that

Yi` =


1√

Vol(V`)
if i ∈ V`,

0 otherwise.

(***)

Claim: Y TDY = I

Claim: Ncut(V1, . . . , Vk) = Trace(Y TLY )
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With normalized cuts

I Objective

min
Y ∈Y∗∗∗

Trace(Y TLY )

I Relaxation

min
Y ∈Rn

Y TDY =I

Trace(Y TLY )

I By substituting Ỹ = D
1
2Y the objective translates to

min
Ỹ ∈Rn

Ỹ T Ỹ =I

Trace(Ỹ TD−
1
2LD−

1
2 Ỹ )
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Spectral Clustering Algorithm

Algorithm

1 Compute graph Laplacian or normalized graph Laplacian

2 Compute k-leading eigenvectors Y ∈ Rn×k of L

3 Normalize rows of Y and say it is Ȳ

4 Run k-means on rows of Ȳ

5 according to this partition V

K-means Step

S∗ = arg max
S∈Rn×k

Shas at most k distinct rows

||Ȳ − S||2F
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5 according to this partition V

K-means Step

S∗ = arg max
S∈Rn×k

Shas at most k distinct rows
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Clustering - Spectral Clustering

Algorithm 1 Spectral Clustering Algorithm

Input: Similarity matrix A ∈ R+m×m and number of clusters
k

Output: Cluster assignment vector c ∈ {1, . . . k}m

Compute a diagonal matrix D such that Dii =
∑

j Aij

Compute L = D−A

Find U ∈ Rm×k containing top k eigenvectors of L as columns
Compute Ũ ∈ Rm×k such that Ũi = Ui

||Ui|| , where Ui is the ith

row of U
Obtain c by clustering the rows of Ũ using k-Means
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Clustering - Spectral Clustering (contd. . . )

Spectral clustering can detect non-convex clusters where k-Means fails6

6Image Source: http://scalefreegan.github.io
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Clustering - Other Issues

I How to select the number of clusters?
I Elbo method, Bayesian model selection, information

theoretic methods etc.

I Which algorithm to use?
I Different algorithms offer different perspectives
I Since clustering is exploratory in nature, must try different

algorithms

I How to evaluate the quality of clustering?
I Ground truth available: Accuracy, Normalized Mutual

Information (NMI) score etc.
I Ground truth unavailable: Modularity, Log Likelihood,

Silhouette coefficient etc.
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