$MACHINE \ LEARNING {}_{\rm by \ ambed kar@IISc}$

Spectral Methods

What is....?

What are spectral methods?

- Underlying objects in a problem can be represented as matrices
- Eigenvalues and eigenvectors of these matrices become clue to a solution.

What are eigenvalues and vectors?

- $\lambda \in \mathbb{C}$ is said to be an eigenvalue of $n \times n$ matrix M if it satisfies $Mv = \lambda v$ for $v \neq 0$.
- v said to be eigenvector of M corresponding to λ .

Can eigenvalues and eigenvectors make a person rich?

▶ Google page rank algorithm

Must read: (K. Bryan and T. Leise, \$25,000,000,000
 Eigenvector: The Linear Algebra behind Google, SIAM review, 2006)

Human Brain

 ${\it Credit:}\ Christiaan\ Vermeleun,\ www.td.org.$

Human Brain

- Possibly the most complex network known to man
- ▶ 100 billion neurons (nodes)
- ▶ 100 trillion connections (edges)
- How can we go about making sense of all this?

Understanding Human Brain

Credit: Stam et. al, "The organization of physiological brain networks.", Clinical neurophysiology

- One viewpoint: Study the brain from a network science perspective.
- Model the structural/functional connectivity of brain regions as "Brain Networks"¹.
- ▶ Lot of data to work with: fMRI, EEG, MEG etc.

¹Park and Friston, Science, 2013

Brain Networks: Community Structure

dit: Sporns, 2013

- A common property of Brain Networks is segregation of neurons based on anatomical or functional characteristics^a
- In graph theory framework, this community structure can be studied with cluster analysis.

 $^{a}(\text{Sporns}, 2013)$

Clustering over Brain Networks

 Credit^2

 A: Functional coactivation network - Different 'Functional' Clusters

▶ B, C: Red Nodes represent the 'hub' nodes in the network ²Crossley et al. "Cognitive relevance of the community structure of the human brain functional coactivation network." PNAS (2013)

Clustering over Networks: Applications

- ▶ Image segmentation
- ▶ Market segmentation in consumer/business networks
- ▶ Detection of Terrorist Groups in Online Social Networks
- ▶ Epidemic spreading on networks

Graph Partitioning³

Objective:

- ▶ High connectivity within clusters
- Few edges across clusters (small cut)
- Balanced partitions

Applications:

Network partitioning

Data clustering

Image segmentation

 $^{3}\mathrm{Drawings}$ and pictures are borrowed from Debarghya

Spectral Graph partitioning⁴

⁴Drawings and pictures are borrowed from Debarghya

Spectral Graph partitioning ⁵

⁵Drawings and pictures borrowed from Debarghya

- ► $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- ▶ Spectrum of *M* is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - Eigenvalues of M are real
 - *M* is diagonalizable (there exists an invertible matrix *P* such that $P^{-1}MP$ is diagonal)
 - ▶ There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

- ▶ $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- Spectrum of M is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - Eigenvalues of M are real
 - ► M is diagonalizable (there exists an invertible matrix P such that $P^{-1}MP$ is diagonal)
 - ▶ There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- Spectrum of M is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - \blacktriangleright Eigenvalues of M are real
 - *M* is diagonalizable (there exists an invertible matrix *P* such that $P^{-1}MP$ is diagonal)
 - ▶ There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

- ► $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- ► Spectrum of M is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - \blacktriangleright Eigenvalues of M are real
 - ► M is diagonalizable (there exists an invertible matrix P such that $P^{-1}MP$ is diagonal)
 - ▶ There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

- ► $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- ► Spectrum of M is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - Eigenvalues of M are real
 - *M* is diagonalizable (there exists an invertible matrix *P* such that $P^{-1}MP$ is diagonal)
 - ▶ There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

- ► $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- ► Spectrum of M is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - \blacktriangleright Eigenvalues of M are real
 - ▶ M is diagonalizable (there exists an invertible matrix P such that $P^{-1}MP$ is diagonal)
 - ▶ There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

- ► $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- ► Spectrum of M is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - Eigenvalues of M are real
 - ► M is diagonalizable (there exists an invertible matrix P such that $P^{-1}MP$ is diagonal)
 - ▶ There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

- ► $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $Mv = \lambda v$ for $v \neq 0$. v said to be eigenvector of M.
- ► Spectrum of M is the set of eigenvalues along with their multiplicities.
- M a real valued $n \times n$ symmetric matrix
 - If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
 - Eigenvalues of M are real
 - ► M is diagonalizable (there exists an invertible matrix P such that $P^{-1}MP$ is diagonal)
 - ► There exists L such that $LL^T = L^T L = I$ such that LAL^T is diagonal.

Let G = (V, E) be a graph. |V| = n and |E| = e.

$$A_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

- ▶ **Degree Matrix:** $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{ii} = \deg(i)$
- ▶ Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{ij} = 1$ if vertex *i* lies on edge *j*.
- Laplacian Matrix: $L \in \mathbb{R}^{n \times n}$ is defined as L = D A
- ▶ Normalized Laplacian: $L \in \mathbb{R}^{n \times n}$ is defined as

Let G = (V, E) be a graph. |V| = n and |E| = e.

$$A_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

- ▶ **Degree Matrix:** $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{ii} = \deg(i)$
- ▶ Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{ij} = 1$ if vertex *i* lies on edge *j*.
- ▶ Laplacian Matrix: $L \in \mathbb{R}^{n \times n}$ is defined as L = D A
- ▶ Normalized Laplacian: $L \in \mathbb{R}^{n \times n}$ is defined as

Let G = (V, E) be a graph. |V| = n and |E| = e.

$$A_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

- ► Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{ii} = \deg(i)$
- ▶ Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{ij} = 1$ if vertex *i* lies on edge *j*.
- **Laplacian Matrix:** $L \in \mathbb{R}^{n \times n}$ is defined as L = D A
- ▶ Normalized Laplacian: $L \in \mathbb{R}^{n \times n}$ is defined as

Let G = (V, E) be a graph. |V| = n and |E| = e.

$$A_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

- ▶ Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{ii} = \deg(i)$
- ▶ Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{ij} = 1$ if vertex *i* lies on edge *j*.
- **Laplacian Matrix:** $L \in \mathbb{R}^{n \times n}$ is defined as L = D A
- ▶ Normalized Laplacian: $L \in \mathbb{R}^{n \times n}$ is defined as

Let G = (V, E) be a graph. |V| = n and |E| = e.

$$A_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

- ▶ Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{ii} = \deg(i)$
- ▶ Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{ij} = 1$ if vertex *i* lies on edge *j*.
- ▶ Laplacian Matrix: L ∈ ℝ^{n×n} is defined as L = D − A
 ▶ Normalized Laplacian: L ∈ ℝ^{n×n} is defined as

Let G = (V, E) be a graph. |V| = n and |E| = e.

$$A_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

- ▶ Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{ii} = \deg(i)$
- ▶ Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{ij} = 1$ if vertex *i* lies on edge *j*.
- ▶ Laplacian Matrix: $L \in \mathbb{R}^{n \times n}$ is defined as L = D A
- ▶ Normalized Laplacian: $L \in \mathbb{R}^{n \times n}$ is defined as

Graph Laplacian

Let G = (V, E) be a graph. |V| = n and |E| = e. Laplacian: $L \in \mathbb{R}^{n \times n}$ such that

$$L_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

THEOREM

Let $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ be eigenvalues of L. Then

- \blacksquare L is symmetric and positive semidefinite
- **2** $\lambda_1 = 0$
- **3** $\lambda_2 > 0$ iff *G* is connected

4 $\lambda_k = 0$ and $\lambda_{k+1} > 0$ iff G has exactly k-disjoint

Graph Laplacian

Let G = (V, E) be a graph. |V| = n and |E| = e. Laplacian: $L \in \mathbb{R}^{n \times n}$ such that

$$L_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

THEOREM

Let $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ be eigenvalues of L. Then

- \blacksquare L is symmetric and positive semidefinite
- **2** $\lambda_1 = 0$
- **3** $\lambda_2 > 0$ iff *G* is connected

4 $\lambda_k = 0$ and $\lambda_{k+1} > 0$ iff G has exactly k-disjoint

Graph Laplacian

Let G = (V, E) be a graph. |V| = n and |E| = e. Laplacian: $L \in \mathbb{R}^{n \times n}$ such that

$$L_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

THEOREM

Let $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ be eigenvalues of L. Then

1 L is symmetric and positive semidefinite

2 $\lambda_1 = 0$

3 $\lambda_2 > 0$ iff G is connected

4 $\lambda_k = 0$ and $\lambda_{k+1} > 0$ iff G has exactly k-disjoint

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

 $\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$

► Cut:

 $\operatorname{Cut}(V_1) = |\delta V_1|$

▶ Expansion Cut

ExpansionCut $(V_1, V - V_1) = \frac{|\delta V_1|}{\min\{|V_1|, |V - V_1|\}}$

▶ Ratio Cut:

RatioCut
$$(V_1, V - V_1) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

$$\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$$

▶ Cut:

$$\operatorname{Cut}(V_1) = |\delta V_1|$$

▶ Expansion Cut

ExpansionCut $(V_1, V - V_1) = \frac{|\delta V_1|}{\min\{|V_1|, |V - V_1|\}}$

▶ Ratio Cut:

RatioCut
$$(V_1, V - V_1) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

$$\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$$

► Cut:

$$\operatorname{Cut}(V_1) = |\delta V_1|$$

▶ Expansion Cut

ExpansionCut $(V_1, V - V_1) = \frac{|\delta V_1|}{\min\{|V_1|, |V - V_1|\}}$

Ratio Cut:

RatioCut
$$(V_1, V - V_1) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

$$\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$$

► Cut:

$$\operatorname{Cut}(V_1) = |\delta V_1|$$

► Expansion Cut

ExpansionCut $(V_1, V - V_1) = \frac{|\delta V_1|}{\min\{|V_1|, |V - V_1|\}}$

▶ Ratio Cut:

RatioCut
$$(V_1, V - V_1) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

$$\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$$

► Cut:

$$\operatorname{Cut}(V_1) = |\delta V_1|$$

▶ Expansion Cut

ExpansionCut $(V_1, V - V_1) = \frac{|\delta V_1|}{\min\{|V_1|, |V - V_1|\}}$

► Ratio Cut:

RatioCut
$$(V_1, V - V_1) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$
 16

Metrics for partitioning

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

 $\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$

► Edge Expansion:

$$\phi_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|}$$

▶ Ratio Cut:

$$\eta_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Metrics for partitioning

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

 $\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$

► Edge Expansion:

$$\phi_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|}$$

▶ Ratio Cut:

$$\eta_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Metrics for partitioning

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

 $\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$

► Edge Expansion:

$$\phi_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|}$$

▶ Ratio Cut:

$$\eta_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Metrics for partitioning

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

 $\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$

► Edge Expansion:

$$\phi_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|}$$

▶ Ratio Cut:

$$\eta_G = \min_{|V_1| \le \frac{|V_1|}{2}} \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

A simple calculation of $x^T L x$

$$x^{T}Lx = x^{T}Dx - x^{T}Ax$$

= $\sum_{i=1}^{n} d_{i}x_{i}^{2} - \sum_{i,j=1}^{n} A_{ij}x_{i}x_{j}$
= $\sum_{i=1}^{n} d_{i}x_{i}^{2} - \sum_{(i,j)\in E} x_{i}x_{j} + x_{j}x_{i}$
= $\sum_{(i,j)\in E} (x_{i}^{2} + x_{j}^{2}) - \sum_{(i,j)\in E} x_{i}x_{j} + x_{j}x_{i}$
= $\sum_{(i,j)\in E} (x_{i} - x_{j})^{2}$

Rayleigh Principle or Courant-Fisher Theorem

Theorem

Let M be a symmetric matrix and let $\theta_1 \leq \theta_2 \leq \ldots \leq \theta_n$ be eigenvalues of M. Then

$$\theta_k = \max_{n-k+1 \dim T} \quad \min_{x \in T, x \neq 0} \frac{x^T M x}{x^T x}$$

Theorem

Let L be the Laplacian of a graph G = (V, E). Then

$$\lambda_2 = \min_{x \perp 1} \frac{x^T M x}{x^T x}$$

Rayleigh Principle or Courant-Fisher Theorem

THEOREM

Let M be a symmetric matrix and let $\theta_1 \leq \theta_2 \leq \ldots \leq \theta_n$ be eigenvalues of M. Then

$$\theta_k = \max_{n-k+1 \dim T} \quad \min_{x \in T, x \neq 0} \frac{x^T M x}{x^T x}$$

THEOREM

Let L be the Laplacian of a graph G = (V, E). Then

$$\lambda_2 = \min_{x \perp 1} \frac{x^T M x}{x^T x}$$

Cheeger's Inequality

DEFINITION (CHEEGER'S CONSTANT) Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

THEOREM (CHEEGER'S INEQUALITY) Let d_{\max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$\frac{\lambda_2}{2} \le \phi_G \le \sqrt{2\lambda_2 d_{\max}}$$

Cheeger's Inequality

DEFINITION (CHEEGER'S CONSTANT) Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

THEOREM (CHEEGER'S INEQUALITY) Let d_{max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$\frac{\lambda_2}{2} \le \phi_G \le \sqrt{2\lambda_2 d_{\max}}$$

Cheeger's Inequality

DEFINITION (CHEEGER'S CONSTANT) Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

THEOREM (CHEEGER'S INEQUALITY) Let d_{max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$\frac{\lambda_2}{2} \le \phi_G \le \sqrt{2\lambda_2 d_{\max}}$$

Cheeger's Inequality (Contd...)

DEFINITION (CHEEGER'S CONSTANT) Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

THEOREM (CHEEGER'S INEQUALITY) Let d_{\max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$2\phi_G \le \lambda_2 \le \frac{{\phi_G}^2}{2}$$

Cheeger's Inequality (Contd...)

DEFINITION (CHEEGER'S CONSTANT) Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

THEOREM (CHEEGER'S INEQUALITY) Let d_{max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$2\phi_G \le \lambda_2 \le \frac{{\phi_G}^2}{2}$$

Cheeger's Inequality (Contd...)

DEFINITION (CHEEGER'S CONSTANT) Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

THEOREM (CHEEGER'S INEQUALITY) Let d_{max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$2\phi_G \le \lambda_2 \le \frac{{\phi_G}^2}{2}$$

Recall Ratio Cut: $\operatorname{RCut}(V_1, V_1^c) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V_1^c|}$

A simple calculation shall give us this:

Define $y \in \mathbb{R}^n$ as

$$y_i = \begin{cases} \sqrt{\frac{|V_1^c|}{|V_1||V|}} & \text{if } i \in V_1, \\ \\ -\sqrt{\frac{|V_1|}{|V_1||V|}} & \text{if } i \notin V_1. \end{cases}$$

Then

$$y^T L y = \operatorname{Rcut}(V_1, V_1^c)$$

Let say \mathcal{Y}^* as subset of \mathbb{R}^n denote various y defined as in (*) for various subsets of V_1 of V.

Recall Ratio Cut:

$$\operatorname{RCut}(V_1, V_1^c) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V_1^c|}$$

A simple calculation shall give us this:

Define $y \in \mathbb{R}^n$ as

$$y_i = \begin{cases} \sqrt{\frac{|V_1^c|}{|V_1||V|}} & \text{if } i \in V_1, \\ \\ -\sqrt{\frac{|V_1|}{|V_1||V|}} & \text{if } i \notin V_1. \end{cases}$$

Then

 $y^T L y = \operatorname{Rcut}(V_1, V_1^c)$

Let say \mathcal{Y}^* as subset of \mathbb{R}^n denote various y defined as in (*) for various subsets of V_1 of V.

(1)

Recall Ratio Cut:

$$\operatorname{RCut}(V_1, V_1^c) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V_1^c|}$$

A simple calculation shall give us this:

Define $y \in \mathbb{R}^n$ as

$$y_i = \begin{cases} \sqrt{\frac{|V_1^c|}{|V_1||V|}} & \text{if } i \in V_1, \\ \\ -\sqrt{\frac{|V_1|}{|V_1||V|}} & \text{if } i \notin V_1. \end{cases}$$

Then

$$y^T L y = \operatorname{Rcut}(V_1, V_1^c)$$

Let say \mathcal{Y}^* as subset of \mathbb{R}^n denote various y defined as in (*) for various subsets of V_1 of V.

(1)

Recall Ratio Cut:

$$\operatorname{RCut}(V_1, V_1^c) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V_1^c|}$$

A simple calculation shall give us this:

Define $y \in \mathbb{R}^n$ as

$$y_{i} = \begin{cases} \sqrt{\frac{|V_{1}^{c}|}{|V_{1}||V|}} & \text{if } i \in V_{1}, \\ \\ -\sqrt{\frac{|V_{1}|}{|V_{1}||V|}} & \text{if } i \notin V_{1}. \end{cases}$$
(1)

Then

$$y^T L y = \operatorname{Rcut}(V_1, V_1^c)$$

Let say \mathcal{Y}^* as subset of \mathbb{R}^n denote various y defined as in (*) for various subsets of V_1 of V.

Objective:

 $\min_{y \in \mathcal{Y}^*} y^T L y$

Trivial Relaxation:

 $\min_{y \in \mathbb{R}^n} y^T L y$

Not very useful as $1^T L 1 = 0$

Nice Relaxation:

$$\min_{y\perp 1}rac{y^TLy}{y^Ty}$$

Objective:

 $\min_{y \in \mathcal{Y}^*} y^T L y$

Trivial Relaxation:

 $\min_{y \in \mathbb{R}^n} y^T L y$

Not very useful as $1^T L 1 = 0$

Nice Relaxation:

$$\min_{y\perp 1}rac{y^TLy}{y^Ty}$$

Objective:

$$\min_{y \in \mathcal{Y}^*} y^T L y$$

Trivial Relaxation:

 $\min_{y \in \mathbb{R}^n} y^T L y$

Not very useful as $1^T L 1 = 0$

Nice Relaxation:

$$\min_{y\perp 1}rac{y^TLy}{y^Ty}$$

Objective:

$$\min_{y \in \mathcal{Y}^*} y^T L y$$

Trivial Relaxation:

$$\min_{y \in \mathbb{R}^n} y^T L y$$

Not very useful as $1^T L 1 = 0$

Nice Relaxation:

$$\min_{y\perp 1} \frac{y^T L y}{y^T y}$$

Ratio Cut:

$$\operatorname{Rcut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{|V_\ell|}$$

Lets define Y: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{|V_\ell|}} & \text{if } i \in V_\ell, \\\\ 0 & \text{otherwise.} \end{cases}$$

(**)

Claim: $Y^T Y = I$

Claim: $\operatorname{Rcut}(V_1, \ldots, V_k) = \operatorname{Trace}(Y^T L Y)$

Ratio Cut:

$$\operatorname{Rcut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{|V_\ell|}$$

Lets define Y: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{|V_\ell|}} & \text{if } i \in V_\ell, \\\\ 0 & \text{otherwise.} \end{cases}$$

Claim: $V^T V = I$

Claim: $\operatorname{Rcut}(V_1, \ldots, V_k) = \operatorname{Trace}(Y^T L Y)$

(**)

Ratio Cut:

$$\operatorname{Rcut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{|V_\ell|}$$

Lets define Y: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{|V_\ell|}} & \text{if } i \in V_\ell, \\\\ 0 & \text{otherwise.} \end{cases}$$

(**)

Claim: $Y^T Y = I$

Claim: $\operatorname{Rcut}(V_1, \ldots, V_k) = \operatorname{Trace}(Y^T L Y)$

Ratio Cut:

$$\operatorname{Rcut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{|V_\ell|}$$

Lets define Y: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{|V_{\ell}|}} & \text{if } i \in V_{\ell}, \\\\ 0 & \text{otherwise.} \end{cases}$$

(**)

Claim: $Y^T Y = I$

Claim: $\operatorname{Rcut}(V_1, \ldots, V_k) = \operatorname{Trace}(Y^T L Y)$

► Objective

$$\min_{Y \in \mathcal{Y}^{**}} \operatorname{Trace}(Y^T L Y)$$

Relaxation

 $\min_{\substack{Y \in \mathbb{R}^n \\ Y^T Y = I}} \operatorname{Trace}(Y^T L Y)$

▶ Optimal Value

$$Y^{\rm opt} = [v_1 \dots v_k]$$

matrix of k leading orthonormal eigenvectors of L

► Objective

$$\min_{Y \in \mathcal{Y}^{**}} \operatorname{Trace}(Y^T L Y)$$

Relaxation

 $\min_{\substack{Y \in \mathbb{R}^n \\ Y^T Y = I}} \operatorname{Trace}(Y^T L Y)$

► Optimal Value

$$Y^{\mathrm{opt}} = [v_1 \dots v_k]$$

matrix of k leading orthonormal eigenvectors of L

► Objective

$$\min_{Y \in \mathcal{Y}^{**}} \operatorname{Trace}(Y^T L Y)$$

Relaxation

$$\min_{\substack{Y \in \mathbb{R}^n \\ Y^T Y = I}} \operatorname{Trace}(Y^T L Y)$$

▶ Optimal Value

$$Y^{\rm opt} = [v_1 \dots v_k]$$

matrix of k leading orthonormal eigenvectors of L

Normalized Cut:

$$\operatorname{Ncut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{\operatorname{Vol}(V_\ell)}$$

where $\operatorname{Vol}(V_{\ell}) = \sum_{i \in V_{\ell}} \deg(i)$

Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{\operatorname{Vol}(V_{\ell})}} & \text{if } i \in V_{\ell}, \\ \\ 0 & \text{otherwise.} \end{cases}$$
(***

Claim: $Y^T D Y = I$

Normalized Cut:

$$\operatorname{Ncut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{\operatorname{Vol}(V_\ell)}$$

where $\operatorname{Vol}(V_{\ell}) = \sum_{i \in V_{\ell}} \deg(i)$

Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{\operatorname{Vol}(V_{\ell})}} & \text{if } i \in V_{\ell}, \\ \\ 0 & \text{otherwise.} \end{cases}$$
(***)

Claim: $Y^T D Y = I$

Normalized Cut:

$$\operatorname{Ncut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{\operatorname{Vol}(V_\ell)}$$

where $\operatorname{Vol}(V_{\ell}) = \sum_{i \in V_{\ell}} \deg(i)$

Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{\operatorname{Vol}(V_{\ell})}} & \text{if } i \in V_{\ell}, \\ \\ 0 & \text{otherwise.} \end{cases}$$
(***)

Claim: $Y^T D Y = I$

Normalized Cut:

$$\operatorname{Ncut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{\operatorname{Vol}(V_\ell)}$$

where $\operatorname{Vol}(V_{\ell}) = \sum_{i \in V_{\ell}} \deg(i)$

Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{\operatorname{Vol}(V_{\ell})}} & \text{if } i \in V_{\ell}, \\ \\ 0 & \text{otherwise.} \end{cases}$$
(***)

Claim: $Y^T D Y = I$

With normalized cuts

► Objective

$$\min_{Y \in \mathcal{Y}^{***}} \operatorname{Trace}(Y^T L Y)$$

▶ Relaxation

$$\min_{\substack{Y \in \mathbb{R}^n \\ \langle ^T DY = I}} \operatorname{Trace}(Y^T L Y)$$

▶ By substituting $\tilde{Y} = D^{\frac{1}{2}}Y$ the objective translates to

$$\min_{\substack{\widetilde{Y} \in \mathbb{R}^n \\ \widetilde{Y}^T \widetilde{Y} = I}} \operatorname{Trace}(\widetilde{Y}^T D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \widetilde{Y})$$

With normalized cuts

► Objective

$$\min_{Y \in \mathcal{Y}^{***}} \operatorname{Trace}(Y^T L Y)$$

▶ Relaxation

$$\min_{\substack{Y \in \mathbb{R}^n \\ Y^T DY = I}} \operatorname{Trace}(Y^T L Y)$$

▶ By substituting $\tilde{Y} = D^{\frac{1}{2}}Y$ the objective translates to

$$\min_{\substack{\widetilde{Y} \in \mathbb{R}^n \\ \overline{Y}^T \widetilde{Y} = I}} \operatorname{Trace}(\widetilde{Y}^T D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \widetilde{Y})$$

With normalized cuts

► Objective

$$\min_{Y \in \mathcal{Y}^{***}} \operatorname{Trace}(Y^T L Y)$$

▶ Relaxation

$$\min_{\substack{Y \in \mathbb{R}^n \\ Y^T DY = I}} \operatorname{Trace}(Y^T L Y)$$

▶ By substituting $\tilde{Y} = D^{\frac{1}{2}}Y$ the objective translates to

$$\min_{\substack{\widetilde{Y}\in\mathbb{R}^n\\\widetilde{Y}^T\widetilde{Y}=I}}\operatorname{Trace}(\widetilde{Y}^T D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \widetilde{Y})$$

Algorithm

- **1** Compute graph Laplacian or normalized graph Laplacian
- **2** Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
- **3** Normalize rows of Y and say it is \overline{Y}
- **4** Run *k*-means on rows of \bar{Y}
- **5** according to this partition V

K-means Step

Algorithm

- **1** Compute graph Laplacian or normalized graph Laplacian
- **2** Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
- **3** Normalize rows of Y and say it is \overline{Y}
- **4** Run *k*-means on rows of \bar{Y}
- **5** according to this partition V

K-means Step

Algorithm

- **1** Compute graph Laplacian or normalized graph Laplacian
- **2** Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
- **3** Normalize rows of Y and say it is \overline{Y}
- **4** Run k-means on rows of \overline{Y}
- **5** according to this partition V

K-means Step

Algorithm

- **1** Compute graph Laplacian or normalized graph Laplacian
- **2** Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
- **3** Normalize rows of Y and say it is \overline{Y}
- **4** Run *k*-means on rows of \bar{Y}

5 according to this partition V

K-means Step

Algorithm

- **1** Compute graph Laplacian or normalized graph Laplacian
- **2** Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
- **3** Normalize rows of Y and say it is \overline{Y}
- **4** Run k-means on rows of \bar{Y}
- **5** according to this partition V

K-means Step

Algorithm

- **1** Compute graph Laplacian or normalized graph Laplacian
- **2** Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
- **3** Normalize rows of Y and say it is \overline{Y}
- **4** Run k-means on rows of \bar{Y}
- **5** according to this partition V

K-means Step

Clustering - Spectral Clustering

Algorithm 1 Spectral Clustering Algorithm

Input: Similarity matrix $\mathbf{A} \in \mathbb{R}^{+m \times m}$ and number of clusters k

Output: Cluster assignment vector $\mathbf{c} \in \{1, \dots k\}^m$

- Compute a diagonal matrix \mathbf{D} such that $\mathbf{D}_{ii} = \sum_j \mathbf{A}_{ij}$
- Compute $\mathbf{L} = \mathbf{D} \mathbf{A}$

Find $\mathbf{U} \in \mathbb{R}^{m \times k}$ containing top k eigenvectors of \mathbf{L} as columns Compute $\tilde{\mathbf{U}} \in \mathbb{R}^{m \times k}$ such that $\tilde{\mathbf{U}}_i = \frac{\mathbf{U}_i}{||\mathbf{U}_i||}$, where \mathbf{U}_i is the i^{th} row of \mathbf{U}

Obtain **c** by clustering the rows of $\tilde{\mathbf{U}}$ using k-Means

Clustering - Spectral Clustering (contd...)

Spectral clustering can detect non-convex clusters where k-Means fails⁶

⁶Image Source: http://scalefreegan.github.io

Clustering - Other Issues

- ▶ How to select the number of clusters?
 - Elbo method, Bayesian model selection, information theoretic methods etc.
- ▶ Which algorithm to use?
 - ▶ Different algorithms offer different perspectives
 - Since clustering is exploratory in nature, must try different algorithms
- ► How to evaluate the quality of clustering?
 - ► Ground truth available: Accuracy, Normalized Mutual Information (NMI) score etc.
 - Ground truth unavailable: Modularity, Log Likelihood, Silhouette coefficient etc.