MACHINE LEARNING

| Spectral Clustering

Spectral Methods

What is....?

What are spectral methods?

- Underlying objects in a problem can be represented as matrices
- Eigenvalues and eigenvectors of these matrices become clue to a solution.

What are eigenvalues and vectors?

- $\lambda \in \mathbb{C}$ is said to be an eigenvalue of $n \times n$ matrix M if it satisfies $M v=\lambda v$ for $v \neq 0$.
- v said to be eigenvector of M corresponding to λ.

Can eigenvalues and eigenvectors make a person rich?

- Yes!
- Google page rank algorithm
- Must read: (K. Bryan and T. Leise, $\$ 25,000,000,000$ Eigenvector: The Linear Algebra behind Google, SIAM review, 2006)

Human Brain

Credit: Christiaan Vermeleun, www.td.org.

Human Brain

- Possibly the most complex network known to man
- 100 billion neurons (nodes)
- 100 trillion connections (edges)
- How can we go about making sense of all this?

Understanding Human Brain

Local activation

Pair-wise interactions

Network organization

Credit: Stam et. al, "The organization of physiological brain networks.", Clinical neurophysiology

- One viewpoint: Study the brain from a network science perspective.
- Model the structural/functional connectivity of brain regions as "Brain Networks" ${ }^{1}$.
- Lot of data to work with: fMRI, EEG, MEG etc.
${ }^{1}$ Park and Friston, Science, 2013

Brain Networks: Community Structure

- A common property of Brain Networks is segregation of neurons based on anatomical or functional characteristics ${ }^{a}$
- In graph theory framework, this community structure can be studied with cluster analysis.

[^0]
Clustering over Brain Networks

Credit ${ }^{2}$

- A: Functional coactivation network - Different 'Functional' Clusters
- B, C: Red Nodes represent the 'hub' nodes in the network ${ }^{2}$ Crossley et al. "Cognitive relevance of the community structure of the human brain functional coactivation network." PNAS (2013)

Clustering over Networks: Applications

- Image segmentation
- Market segmentation in consumer/business networks
- Detection of Terrorist Groups in Online Social Networks
- Epidemic spreading on networks

Graph Partitioning ${ }^{3}$

Objective:

- High connectivity within clusters
- Few edges across clusters (small cut)
- Balanced partitions

Applications:

Network
partitioning

Data
clustering

Image segmentation
${ }^{3}$ Drawings and pictures are borrowed from Debarghya

Spectral Graph partitioning ${ }^{4}$

Input Graph

(Normalized)
Adjacency matrix

Find k dominant eigenvectors

Good balanced cut

[^1]
Spectral Graph partitioning ${ }^{5}$

Input Graph

(Normalized)
Adjacency matrix

Find k dominant eigenvectors

Good balanced cut

[^2]
A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.
M a real valued $n \times n$ symmetric matrix
- If u, v are cimenvectors of distinct cigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)
- There exists L such that $L L^{T}=L^{T} L=I$ such that $L A L^{T}$ is diagonal.

A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.
M a real valued $n \times n$ symmetric matrix
- If u, v are cimenvectors of distinct cigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)
- There exists L such that $L L^{T}=L^{T} L=I$ such that $L A L^{T}$ is diagonal.

A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.

M a roal waluod $n \times n$ symmetric matrix

- If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)
- There exists L such that $L L^{T}=L^{T} L=I$ such that $L A L^{T}$ is diagonal.

A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.
M a real valued $n \times n$ symmetric matrix
- If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)
- There exists L such that $L L^{T}=L^{T} L=I$ such that $L A L^{T}$ is diagonal.

A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.
M a real valued $n \times n$ symmetric matrix
- If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)
- There exists L such that $L L^{T}=L^{T} L=I$ such that $L A L^{T}$ is diagonal.

A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.
M a real valued $n \times n$ symmetric matrix
- If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)
- There exists L such that $L L^{T}=L^{T} L=I$ such that $L A L^{T}$ is diagonal.

A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.
M a real valued $n \times n$ symmetric matrix
- If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)

A quick LA recall

M a real valued $n \times n$ matrix.

- $\lambda \in \mathbb{C}$ is said to be eigenvalue of M if it satisfies $M v=\lambda v$ for $v \neq 0 . v$ said to be eigenvector of M .
- Spectrum of M is the set of eigenvalues along with their multiplicities.
M a real valued $n \times n$ symmetric matrix
- If u, v are eigenvectors of distinct eigenvalues then u and v are orthogonal.
- Eigenvalues of M are real
- M is diagonalizable (there exists an invertible matrix P such that $P^{-1} M P$ is diagonal)
- There exists L such that $L L^{T}=L^{T} L=I$ such that $L A L^{T}$ is diagonal.

Some matrices related to graphs

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$.

- Adjacency Matrix: $A \in \mathbb{R}^{n \times n}$ such that

$$
A_{i j}= \begin{cases}0 & \text { if } \quad i=j, \\ 1 & \text { if } \quad(i, j) \in E, \\ 0 & \text { if } \quad(i, j) \notin E .\end{cases}
$$

- Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{i i}=\operatorname{deg}(i)$
- Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{i j}=1$ if vertex i lies on edge j.

Some matrices related to graphs

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$.

- Adjacency Matrix: $A \in \mathbb{R}^{n \times n}$ such that

$$
A_{i j}= \begin{cases}0 & \text { if } \quad i=j, \\ 1 & \text { if } \quad(i, j) \in E \\ 0 & \text { if } \quad(i, j) \notin E\end{cases}
$$

- Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that
- Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{i j}=1$ if vertex i lies on edge j.

Some matrices related to graphs

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$.

- Adjacency Matrix: $A \in \mathbb{R}^{n \times n}$ such that

$$
A_{i j}= \begin{cases}0 & \text { if } \quad i=j \\ 1 & \text { if } \quad(i, j) \in E \\ 0 & \text { if } \quad(i, j) \notin E\end{cases}
$$

- Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{i i}=\operatorname{deg}(i)$
- Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{i j}=1$ if vertex

Some matrices related to graphs

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$.

- Adjacency Matrix: $A \in \mathbb{R}^{n \times n}$ such that

$$
A_{i j}= \begin{cases}0 & \text { if } \quad i=j, \\ 1 & \text { if } \quad(i, j) \in E \\ 0 & \text { if } \quad(i, j) \notin E\end{cases}
$$

- Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{i i}=\operatorname{deg}(i)$
- Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{i j}=1$ if vertex i lies on edge j.

Some matrices related to graphs

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$.

- Adjacency Matrix: $A \in \mathbb{R}^{n \times n}$ such that

$$
A_{i j}= \begin{cases}0 & \text { if } \quad i=j \\ 1 & \text { if } \quad(i, j) \in E \\ 0 & \text { if } \quad(i, j) \notin E\end{cases}
$$

- Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{i i}=\operatorname{deg}(i)$
- Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{i j}=1$ if vertex i lies on edge j.
- Laplacian Matrix: $L \in \mathbb{R}^{n \times n}$ is defined as $L=D-A$

Some matrices related to graphs

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$.

- Adjacency Matrix: $A \in \mathbb{R}^{n \times n}$ such that

$$
A_{i j}= \begin{cases}0 & \text { if } \quad i=j \\ 1 & \text { if } \quad(i, j) \in E \\ 0 & \text { if } \quad(i, j) \notin E\end{cases}
$$

- Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{i i}=\operatorname{deg}(i)$
- Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{i j}=1$ if vertex i lies on edge j.
- Laplacian Matrix: $L \in \mathbb{R}^{n \times n}$ is defined as $L=D-A$
- Normalized Laplacian: $L \in \mathbb{R}^{n \times n}$ is defined as

Graph Laplacian

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Laplacian:
$L \in \mathbb{R}^{n \times n}$ such that

Theorem

$1 L$ is symmetric and positive semidefinite
a. $\lambda_{1}=0$

B $\lambda_{2}>0$ iff G is connected
团 $\lambda_{k}=0$ and $\lambda_{k+1}>0$ iff G has exactly k-disjoint

Graph Laplacian

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Laplacian: $L \in \mathbb{R}^{n \times n}$ such that

$$
L_{i j}= \begin{cases}d_{i} & \text { if } \quad i=j, \\ -1 & \text { if } \quad(i, j) \in E \\ 0 & \text { if } \quad(i, j) \notin E\end{cases}
$$

Theorem
Let $\lambda_{1}<\lambda_{2}<\ldots \leq \lambda_{n}$ be eigenvalues of L. Then
$1 L$ is symmetric and positive semidefinite
a. $\lambda_{1}=0$

B $\lambda_{2}>0$ iff G is connected

Graph Laplacian

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Laplacian:
$L \in \mathbb{R}^{n \times n}$ such that

$$
L_{i j}= \begin{cases}d_{i} \quad & \text { if } \quad i=j \\ -1 & \text { if } \quad(i, j) \in E \\ 0 & \text { if } \quad(i, j) \notin E\end{cases}
$$

Theorem
Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be eigenvalues of L. Then
$1 L$ is symmetric and positive semidefinite
2 $\lambda_{1}=0$
B $\lambda_{2}>0$ iff G is connected
$4 \lambda_{k}=0$ and $\lambda_{k+1}>0$ iff G has exactly k-disjoint

Cuts

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Cut:

$$
\operatorname{Cut}\left(V_{1}\right)=\left|\delta V_{1}\right|
$$

- Expansion Cut

$$
\text { ExpansionCut }\left(V_{1}, V-V_{1}\right)=\frac{\left|\delta V_{1}\right|}{\min \left\{\left|V_{1}\right|,\left|V-V_{1}\right|\right\}}
$$

- Ratio Cut:

$$
\text { na.. Cut }\left(V_{1} \cdot V-V_{1}\right)=\frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}+\frac{\left|\delta V_{1}\right|}{\left|V-V_{1}\right|}
$$

Cuts

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Expansion Cut

$$
\operatorname{Cut}\left(V_{1}\right)=\left|\delta V_{1}\right|
$$

- Ratio Cut:

Cuts

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$. Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Cut:

$$
\operatorname{Cut}\left(V_{1}\right)=\left|\delta V_{1}\right|
$$

- Expansion Cut

- Ratio Cut:

Cuts

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Cut:

$$
\operatorname{Cut}\left(V_{1}\right)=\left|\delta V_{1}\right|
$$

- Expansion Cut

$$
\text { ExpansionCut }\left(V_{1}, V-V_{1}\right)=\frac{\left|\delta V_{1}\right|}{\min \left\{\left|V_{1}\right|,\left|V-V_{1}\right|\right\}}
$$

- Ratio Cut:

Cuts

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Cut:

$$
\operatorname{Cut}\left(V_{1}\right)=\left|\delta V_{1}\right|
$$

- Expansion Cut

$$
\text { ExpansionCut }\left(V_{1}, V-V_{1}\right)=\frac{\left|\delta V_{1}\right|}{\min \left\{\left|V_{1}\right|,\left|V-V_{1}\right|\right\}}
$$

- Ratio Cut:

$$
\operatorname{RatioCut}\left(V_{1}, V-V_{1}\right)=\frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}+\frac{\left|\delta V_{1}\right|}{\left|V-V_{1}\right|}
$$

Metrics for partitioning

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Edge Expansion:
- Ratio Cut:

Metrics for partitioning

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Edge Expansion:
- Ratio Cut:

Metrics for partitioning

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Edge Expansion:

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{|V|}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

- Ratio Cut:

Metrics for partitioning

Let $G=(V, E)$ be a graph. $|V|=n$ and $|E|=e$. Let $V_{1} \subset V$.
Boundary: The boundary of V_{1} is defined as

$$
\delta V_{1}=\left\{(i, j) \in E: i \in V_{1} \text { and } j \notin V_{1}\right\}
$$

- Edge Expansion:

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{|V|}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

- Ratio Cut:

$$
\eta_{G}=\min _{\left|V_{1}\right| \leq \frac{|V|}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}+\frac{\left|\delta V_{1}\right|}{\left|V-V_{1}\right|}
$$

A simple calculation of $x^{T} L x$

$$
\begin{aligned}
x^{T} L x & =x^{T} D x-x^{T} A x \\
& =\sum_{i=1}^{n} d_{i} x_{i}^{2}-\sum_{i, j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\sum_{i=1}^{n} d_{i} x_{i}^{2}-\sum_{(i, j) \in E} x_{i} x_{j}+x_{j} x_{i} \\
& =\sum_{(i, j) \in E}\left(x_{i}^{2}+x_{j}^{2}\right)-\sum_{(i, j) \in E} x_{i} x_{j}+x_{j} x_{i} \\
& =\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
\end{aligned}
$$

Rayleigh Principle or Courant-Fisher Theorem

Theorem

Let M be a symmetric matrix and let $\theta_{1} \leq \theta_{2} \leq \ldots \leq \theta_{n}$ be eigenvalues of M. Then

$$
\theta_{k}=\max _{n-k+1 \operatorname{dim} T} \min _{x \in T, x \neq 0} \frac{x^{T} M x}{x^{T} x}
$$

Theorem
Let I, he the I aplacian of a graph $G=(V, E)$. Then

Rayleigh Principle or Courant-Fisher Theorem

Theorem

Let M be a symmetric matrix and let $\theta_{1} \leq \theta_{2} \leq \ldots \leq \theta_{n}$ be eigenvalues of M. Then

$$
\theta_{k}=\max _{n-k+1 \operatorname{dim} T} \min _{x \in T, x \neq 0} \frac{x^{T} M x}{x^{T} x}
$$

Theorem

Let L be the Laplacian of a graph $G=(V, E)$. Then

$$
\lambda_{2}=\min _{x \perp 1} \frac{x^{T} M x}{x^{T} x}
$$

Cheeger's Inequality

Definition (Cheeger's Constant)

Let $G=(V, E)$ be a graph and consider a graph bisection problem. Then

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{n}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

Theorem (Cheeger's Inequality) Let $d_{\text {max }}$ denote the maximum dearee of G ar λ_{2} be the second smallest eigenvalue of the Laplacian L of G. Then

Cheeger's Inequality

Definition (Cheeger's Constant)

Let $G=(V, E)$ be a graph and consider a graph bisection problem. Then

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{n}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

Theorem (Cheeger's Inequality)

Let $d_{\max }$ denote the maximum degree of G and λ_{2} be the second smallest eigenvalue of the Laplacian L of G. Then

$$
\frac{\lambda_{2}}{2} \leq \phi_{G} \leq \sqrt{2 \lambda_{2} d_{\max }}
$$

Note: Look at proofs of Mohar and Spielman

Cheeger's Inequality

Definition (Cheeger's Constant)

Let $G=(V, E)$ be a graph and consider a graph bisection problem. Then

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{n}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

Theorem (Cheeger's Inequality)

Let $d_{\max }$ denote the maximum degree of G and λ_{2} be the second smallest eigenvalue of the Laplacian L of G. Then

$$
\frac{\lambda_{2}}{2} \leq \phi_{G} \leq \sqrt{2 \lambda_{2} d_{\max }}
$$

Note: Look at proofs of Mohar and Spielman

Cheeger's Inequality (Contd...)

Definition (Cheeger's Constant)

Let $G=(V, E)$ be a graph and consider a graph bisection problem. Then

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{n}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

Theorem (Cheeger's Inequality) Let $d_{\text {mov }}$ denote the maximum dearee of G ar λ_{2} be the second smallest eigenvalue of the Laplacian L of G. Then

Note: Look at proofs of Mohar and Spielman

Cheeger's Inequality (Contd...)

Definition (Cheeger's Constant)

Let $G=(V, E)$ be a graph and consider a graph bisection problem. Then

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{n}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

Theorem (Cheeger's Inequality)

Let $d_{\max }$ denote the maximum degree of G and λ_{2} be the second smallest eigenvalue of the Laplacian L of G. Then

$$
2 \phi_{G} \leq \lambda_{2} \leq \frac{\phi_{G}^{2}}{2}
$$

Note: Look at proofs of Mohar and Spielman

Cheeger's Inequality (Contd...)

Definition (Cheeger's Constant)

Let $G=(V, E)$ be a graph and consider a graph bisection problem. Then

$$
\phi_{G}=\min _{\left|V_{1}\right| \leq \frac{n}{2}} \frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}
$$

Theorem (Cheeger's Inequality)

Let $d_{\max }$ denote the maximum degree of G and λ_{2} be the second smallest eigenvalue of the Laplacian L of G. Then

$$
2 \phi_{G} \leq \lambda_{2} \leq \frac{\phi_{G}{ }^{2}}{2}
$$

Note: Look at proofs of Mohar and Spielman

Graph Bisection

Recall Ratio Cut:

$$
\operatorname{RCut}\left(V_{1}, V_{1}^{c}\right)=\frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}+\frac{\left|\delta V_{1}\right|}{\left|V_{1}^{c}\right|}
$$

A simple calculation shall give us this:
Define $y \in \mathbb{R}^{n}$ as

$$
y^{T} L y=\operatorname{Rcut}\left(V_{1}, V_{1}^{c}\right)
$$

Let say \mathcal{Y}^{*} as subset of \mathbb{R}^{n} denote various y defined as in $\left(^{*}\right)$ for various subsets of V_{1} of V.

Graph Bisection

Recall Ratio Cut:

$$
\operatorname{RCut}\left(V_{1}, V_{1}^{c}\right)=\frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}+\frac{\left|\delta V_{1}\right|}{\left|V_{1}^{c}\right|}
$$

A simple calculation shall give us this:
Define $y \in \mathbb{R}^{n}$ as

$$
y_{i}=\left\{\begin{array}{ll}
\sqrt{\frac{\left|V_{1}^{c}\right|}{\left|V_{1}\right||V|}} & \text { if } \tag{1}
\end{array} \quad i \in V_{1}, ~=\frac{\text { if }}{} \quad i \notin V_{1} .\right.
$$

Then

$$
y^{T} L y=\operatorname{Rcut}\left(V_{1}, V_{1}^{c}\right)
$$

Let say \mathcal{Y}^{*} as subset of \mathbb{R}^{n} denote various y defined as in $\left(^{*}\right)$ for various subsets of V_{1} of V.

Graph Bisection

Recall Ratio Cut:

$$
\operatorname{RCut}\left(V_{1}, V_{1}^{c}\right)=\frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}+\frac{\left|\delta V_{1}\right|}{\left|V_{1}^{c}\right|}
$$

A simple calculation shall give us this:
Define $y \in \mathbb{R}^{n}$ as

$$
y_{i}=\left\{\begin{array}{ll}
\sqrt{\frac{\left|V_{1}^{c}\right|}{\left|V_{1}\right||V|}} & \text { if } \tag{1}
\end{array} \quad i \in V_{1}, ~=\frac{\text { if }}{} \quad i \notin V_{1} .\right.
$$

Then

$$
y^{T} L y=\operatorname{Rcut}\left(V_{1}, V_{1}^{c}\right)
$$

Let say \mathcal{Y}^{*} as subset of \mathbb{R}^{n} denote various y defined as in $\left(^{*}\right)$ for various subsets of V_{1} of V.

Graph Bisection

Recall Ratio Cut:

$$
\operatorname{RCut}\left(V_{1}, V_{1}^{c}\right)=\frac{\left|\delta V_{1}\right|}{\left|V_{1}\right|}+\frac{\left|\delta V_{1}\right|}{\left|V_{1}^{c}\right|}
$$

A simple calculation shall give us this:
Define $y \in \mathbb{R}^{n}$ as

Then

$$
y^{T} L y=\operatorname{Rcut}\left(V_{1}, V_{1}^{c}\right)
$$

Let say \mathcal{Y}^{*} as subset of \mathbb{R}^{n} denote various y defined as in $\left(^{*}\right)$ for various subsets of V_{1} of V.

Graph Bisection (contd..)

Objective:

$$
\min _{y \in \mathcal{Y}^{*}} y^{T} L y
$$

Trivial Relaxation:

$$
\min _{y \in \mathbb{R}^{n}} y^{T} L y
$$

Not very useful as $1^{T} L 1=0$

Nice Relaxation:

Since $y^{T_{1}}=\sum_{\text {iev }} y_{i}=0, y$ is orthogonal to 1. Also since $y^{T} y=\sum_{i \in V} y_{i}^{2}=1, y$ is a unit norm vector. Hence the relaxed problem can be

Graph Bisection (contd..)

Objective:

$$
\min _{y \in \mathcal{Y}^{*}} y^{T} L y
$$

Trivial Relaxation:
$\min _{y \in \mathbb{R}^{n}} y^{T} L y$

Nice Relaxation:

Graph Bisection (contd..)

Objective:

$$
\min _{y \in \mathcal{Y}^{*}} y^{T} L y
$$

Trivial Relaxation:

$$
\min _{y \in \mathbb{R}^{n}} y^{T} L y
$$

Not very useful as $1^{T} L 1=0$

Nice Relaxation:

problem can be

Graph Bisection (contd..)

Objective:

$$
\min _{y \in \mathcal{Y}^{*}} y^{T} L y
$$

Trivial Relaxation:

$$
\min _{y \in \mathbb{R}^{n}} y^{T} L y
$$

Not very useful as $1^{T} L 1=0$

Nice Relaxation:
Since $y^{T} 1=\sum_{i \in V} y_{i}=0, y$ is orthogonal to 1 . Also since $y^{T} y=\sum_{i \in V} y_{i}^{2}=1, y$ is a unit norm vector. Hence the relaxed problem can be

$$
\min _{y \perp 1} \frac{y^{T} L y}{y^{T} y}
$$

Graph k-way partitioning

Ratio Cut:

$$
\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\left|V_{\ell}\right|}
$$

Lets define Y : Define $y \in \mathbb{R}^{n \times k}$ such that

if $\quad i \in V_{\ell}$, otherwise.

Claim: $\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{Trace}\left(Y^{T} L Y\right)$

Graph k-way partitioning

Ratio Cut:

$$
\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\left|V_{\ell}\right|}
$$

Lets define Y : Define $y \in \mathbb{R}^{n \times k}$ such that

$$
Y_{i \ell}= \begin{cases}\frac{1}{\sqrt{\left|V_{\ell}\right|}} & \text { if } \quad i \in V_{\ell} \tag{**}\\ 0 & \text { otherwise }\end{cases}
$$

Claim: $Y^{T} Y=I$

Claim: $\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{Trace}\left(Y^{T} L Y\right)$

Graph k-way partitioning

Ratio Cut:

$$
\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\left|V_{\ell}\right|}
$$

Lets define Y : Define $y \in \mathbb{R}^{n \times k}$ such that

$$
Y_{i \ell}= \begin{cases}\frac{1}{\sqrt{\left|V_{\ell}\right|}} & \text { if } \quad i \in V_{\ell} \tag{**}\\ 0 & \text { otherwise }\end{cases}
$$

Claim: $Y^{T} Y=I$

Claim: $\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{Trace}\left(Y^{T} L Y\right)$

Graph k-way partitioning

Ratio Cut:

$$
\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\left|V_{\ell}\right|}
$$

Lets define Y : Define $y \in \mathbb{R}^{n \times k}$ such that

$$
Y_{i \ell}= \begin{cases}\frac{1}{\sqrt{\left|V_{\ell}\right|}} & \text { if } \quad i \in V_{\ell} \tag{**}\\ 0 & \text { otherwise }\end{cases}
$$

Claim: $Y^{T} Y=I$

Claim: $\operatorname{Rcut}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{Trace}\left(Y^{T} L Y\right)$

Graph k-way partitioning

- Objective

$$
\min _{Y \in \mathcal{Y}^{* *}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Relaxation

- Optimal Value

$$
Y^{\mathrm{opt}}=\left[v_{1} \ldots v_{k}\right]
$$

matrix of k leading orthonormal eigenvectors of L

Graph k-way partitioning

- Objective

$$
\min _{Y \in \mathcal{Y}^{* *}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Relaxation

$$
\min _{\substack{Y \in \mathbb{R}^{n} \\ Y^{T} Y=I}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Optimal Value

$$
Y^{\mathrm{opt}}=\left[v_{1} \ldots v_{k}\right]
$$

matrix of k leading orthonormal eigenvectors of L

Graph k-way partitioning

- Objective

$$
\min _{Y \in \mathcal{Y}^{* *}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Relaxation

$$
\min _{\substack{Y \in \mathbb{R}^{n} \\ Y^{T} Y=I}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Optimal Value

$$
Y^{\mathrm{opt}}=\left[v_{1} \ldots v_{k}\right]
$$

matrix of k leading orthonormal eigenvectors of L

With Normaized Cuts

Normalized Cut:

$$
\operatorname{Ncut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\operatorname{Vol}\left(V_{\ell}\right)}
$$

where $\operatorname{Vol}\left(V_{\ell}\right)=\sum_{i \in V_{\ell}} \operatorname{deg}(i)$
Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

Claim: $\operatorname{Ncut}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{Trace}\left(Y^{T} L Y\right)$

With Normaized Cuts

Normalized Cut:

$$
\operatorname{Ncut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\operatorname{Vol}\left(V_{\ell}\right)}
$$

where $\operatorname{Vol}\left(V_{\ell}\right)=\sum_{i \in V_{\ell}} \operatorname{deg}(i)$
Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$
Y_{i \ell}= \begin{cases}\frac{1}{\sqrt{\operatorname{Vol}\left(V_{\ell}\right)}} & \text { if } \quad i \in V_{\ell} \\ 0 & \text { otherwise }\end{cases}
$$

With Normaized Cuts

Normalized Cut:

$$
\operatorname{Ncut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\operatorname{Vol}\left(V_{\ell}\right)}
$$

where $\operatorname{Vol}\left(V_{\ell}\right)=\sum_{i \in V_{\ell}} \operatorname{deg}(i)$
Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$
Y_{i \ell}= \begin{cases}\frac{1}{\sqrt{\operatorname{Vol}\left(V_{\ell}\right)}} & \text { if } \quad i \in V_{\ell} \tag{***}\\ 0 & \text { otherwise }\end{cases}
$$

Claim: $Y^{T} D Y=I$

Claim: $\operatorname{Ncut}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{Trace}\left(Y^{T} L Y\right)$

With Normaized Cuts

Normalized Cut:

$$
\operatorname{Ncut}\left(V_{1}, \ldots, V_{k}\right)=\sum_{\ell=1}^{k} \frac{\left|\delta V_{\ell}\right|}{\operatorname{Vol}\left(V_{\ell}\right)}
$$

where $\operatorname{Vol}\left(V_{\ell}\right)=\sum_{i \in V_{\ell}} \operatorname{deg}(i)$
Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$
Y_{i \ell}= \begin{cases}\frac{1}{\sqrt{\operatorname{Vol}\left(V_{\ell}\right)}} & \text { if } \quad i \in V_{\ell} \tag{***}\\ 0 & \text { otherwise }\end{cases}
$$

Claim: $Y^{T} D Y=I$

Claim: $\operatorname{Ncut}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{Trace}\left(Y^{T} L Y\right)$

With normalized cuts

- Objective

$$
\min _{Y \in \mathcal{Y}^{* * *}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Relaxation

- By substituting $\widetilde{Y}=D^{\frac{1}{2}} Y$ the objective translates to

With normalized cuts

- Objective

$$
\min _{Y \in \mathcal{Y}^{* * *}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Relaxation

$$
\min _{\substack{Y \in \mathbb{R}^{n} \\ Y^{T} D Y=I}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- By substituting $\widetilde{Y}=D^{\frac{1}{2}} Y$ the objective translates to

With normalized cuts

- Objective

$$
\min _{Y \in \mathcal{Y}^{* * *}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- Relaxation

$$
\min _{\substack{Y \in \mathbb{R}^{n} \\ Y^{T} D Y=I}} \operatorname{Trace}\left(Y^{T} L Y\right)
$$

- By substituting $\widetilde{Y}=D^{\frac{1}{2}} Y$ the objective translates to

$$
\min _{\substack{\widetilde{Y} \in \mathbb{R}^{n} \\ \tilde{Y} Y}} \operatorname{Trace}\left(\widetilde{Y}^{T} D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \widetilde{Y}\right)
$$

Spectral Clustering Algorithm

Algorithm

1 Compute graph Laplacian or normalized graph Laplacian
2 Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
3 Normalize rows of Y and say it is \bar{Y}
-arn 1 . manans on rows of \bar{Y}
(5 according to this partition V
K-means Step

Spectral Clustering Algorithm

Algorithm

1 Compute graph Laplacian or normalized graph Laplacian
2 Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
3 Normalize rows of Y and say it is \bar{Y}
4 Run k-means on rows of \bar{Y}
B according to this partition V
K-means Step
$\arg \max$

Shas at most distinct rows

Spectral Clustering Algorithm

Algorithm

1 Compute graph Laplacian or normalized graph Laplacian
2 Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
3 Normalize rows of Y and say it is \bar{Y}
© Run k-means on rows of \bar{Y}
5 according to this partition V
K-means Step

Shas at most distinct rows

Spectral Clustering Algorithm

Algorithm

1 Compute graph Laplacian or normalized graph Laplacian
2 Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
3 Normalize rows of Y and say it is \bar{Y}
4 Run k-means on rows of \bar{Y}
5 according to this partition V

K-means Step

Spectral Clustering Algorithm

Algorithm

1 Compute graph Laplacian or normalized graph Laplacian
2 Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
3 Normalize rows of Y and say it is \bar{Y}
4 Run k-means on rows of \bar{Y}
5 according to this partition V
K-means Step

Spectral Clustering Algorithm

Algorithm

1 Compute graph Laplacian or normalized graph Laplacian
2 Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
3 Normalize rows of Y and say it is \bar{Y}
4 Run k-means on rows of \bar{Y}
5 according to this partition V

K-means Step

$$
\begin{aligned}
& S^{*}=\quad \underset{S \in \mathbb{R}^{n \times k}}{\arg \max } \quad\|\bar{Y}-S\|_{F}^{2} \\
& \text { Shas at most } k \text { distinct rows }
\end{aligned}
$$

Clustering - Spectral Clustering

Algorithm 1 Spectral Clustering Algorithm

Input: Similarity matrix $\mathbf{A} \in \mathbb{R}^{+m \times m}$ and number of clusters k
Output: Cluster assignment vector $\mathbf{c} \in\{1, \ldots k\}^{m}$
Compute a diagonal matrix \mathbf{D} such that $\mathbf{D}_{i i}=\sum_{j} \mathbf{A}_{i j}$
Compute $\mathbf{L}=\mathbf{D}-\mathbf{A}$
Find $\mathbf{U} \in \mathbb{R}^{m \times k}$ containing top k eigenvectors of \mathbf{L} as columns Compute $\tilde{\mathbf{U}} \in \mathbb{R}^{m \times k}$ such that $\tilde{\mathbf{U}}_{i}=\frac{\mathbf{U}_{i}}{\left\|\mathbf{U}_{i}\right\|}$, where \mathbf{U}_{i} is the $i^{t h}$ row of \mathbf{U}
Obtain \mathbf{c} by clustering the rows of $\tilde{\mathbf{U}}$ using k-Means

Clustering - Spectral Clustering (contd. ..)

Spectral clustering can detect non-convex clusters where k-Means fails ${ }^{6}$

[^3]
Clustering - Other Issues

- How to select the number of clusters?
- Elbo method, Bayesian model selection, information theoretic methods etc.
- Which algorithm to use?
- Different algorithms offer different perspectives
- Since clustering is exploratory in nature, must try different algorithms
- How to evaluate the quality of clustering?
- Ground truth available: Accuracy, Normalized Mutual Information (NMI) score etc.
- Ground truth unavailable: Modularity, Log Likelihood, Silhouette coefficient etc.

[^0]: ${ }^{a}$ (Sporns, 2013)

[^1]: ${ }^{4}$ Drawings and pictures are borrowed from Debarghya

[^2]: ${ }^{5}$ Drawings and pictures borrowed from Debarghya

[^3]: ${ }^{6}$ Image Source: http://scalefreegan.github.io

