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What are TPPs?

ounkwneE

e Temporal Point Processes (TPPs) are

probabilistic generative models for
continuous-time event sequences.

e TPPs can be learned from data using

traditional methods [1, 2, 3] and using deep
learning [4, 5, 6].

Some of the example use cases include
modeling and predicting hospital visits, stock
portfolio selection, and shopping basket
checkouts.

M. Winkel — Poisson processes, generalizations and applications (stats.ox.ac.uk/~winkel/bs3a07I1-3.pdf)

T. Beckers — An introduction to Gaussian Process models (arxiv.org/pdf/2102.05497.pdf)

P. J. Laub and others — Hawkes Processes (arxiv.org/pdf/1507.02822.pdf)

Du and others — Recurrent Marked Temporal Point Processes (arxiv.org/pdf/1705.05690.pdf)

Mei and Eisner — The Neural Hawkes Process (arxiv.org/pdf/1612.09328.pdf)

Zuo and others — Transformer Hawkes Process (arxiv.org/pdf/2002.09291.pdf)



https://www.stats.ox.ac.uk/~winkel/bs3a07l1-3.pdf
https://arxiv.org/pdf/2102.05497.pdf
https://arxiv.org/pdf/1507.02822.pdf
https://arxiv.org/pdf/1705.05690.pdf
https://arxiv.org/pdf/1612.09328.pdf
https://arxiv.org/pdf/2002.09291.pdf

Temporal Event Sets

The notion of sequence of events (in TPPs) is extended to a sequence of sets of events.
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Methodology

How to model Temporal Event sets?



Step 1

Learning Contextual Representations for items in event sets
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Step 1: Contextual 'tem Embeddings
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Noise contrastive estimation:
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Step 2

Modeling Temporal Event sets using the embeddings learnt in Step 1



Step 2: Temporal Event set Modeling
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Q: What will be the diseases?
A: Diabetic Renal Discase,
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History
Contains: event sets, corresponding timestamps, and associated domain specific features



Step 2: Temporal Event set Modeling
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Y= Anemia v=—| Metabolic Syndrome X,
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A: Diabetic Renal Discase,
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So We need to predict: e, and t, given H,

e, is a subset of the event set
He=1{ (sutufr), (52, t2, f2), (s3.t3,f3) ) t4 is the time at which e, occurred



Step 2: Temporal Event set Modeling
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Hy=1{ (sp.t1,f1) (52, ta, f2), (s3,t3, f3) } = (egty)



Step 2: Temporal Event set Modeling
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S = 51,82, ""Sk = {ll, ly, l3, lg, l5, ""ilO}



Step 2: Temporal Event set Modeling
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Need to preserve the set relations (permutation invariance and equivariance)
But also differentiate among different different sets with how far they are from each other in the timeline



Step 2: Temporal Event set I\/Iodeling

Hence, we introduce SpatioTemporal Encodings:
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where t; is the timestamp corresponding to the jt* event set sjforl<j<k
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Need to preserve the set relations (permutation invariance and equivariance)
But also differentiate among different different sets with how far they are from each other in the timeline



Step 2: Temporal Event set Modeling
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Step 2: Temporal Event set Modeling

Each of the heads predicts a gaussian distribution

corresponding to the intensity
We use a mixture of gaussians to predict arbitrarily

complex intensities
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Encoding Generator
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S =51,89, ..., 5k



Step 2: Temporal Event set Modeling
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Step 2: Temporal Event set Modeling

Losses (7 is the target set):
* Binary Cross Entropy (to model and predict event sets)
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 Huber Loss (to learn temporal relations)

SpatioTemporal Huber A2/2 f A<
Encoding Generator ETempO'ral — 5(A —6/2) ;otherwise
?

where A is the absolute value of (£;41— tx4+1)-

Item Encoder

We use a linear combination of the the above:

S=s55..,S BCE Di Hub
152, ) S £ = MLEGE, + ML, + AsLiiber

Temporal



Results
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We gain improvement when compared to baselines
irrespective of whether we use contextual embeddings




Synthea Instacart

Training method Event set Time Prediction Event Set Time Prediction
Prediction given given event Prediction given given event
time (DSC) (MAE) time (DSC) (MAE)
Trained from scratch

Neural Hawkes Process

Transformer Hawkes Process

Fine-tuning
to down-
stream tasks

Neural Hawkes Process
Transformer Hawkes Process
Hierarchical Model

Ours

Note than the baselines are not good at being fine-tuned
since training from scratch often gives better results.




Transfer
Learning

(from Synthea
to MIMIC-III)

Training Method

Trained from scratch

Finetuned (from model
pretrained on Synthea)

Event Set
Prediction given

time (DSC)

0.47

0.52

Time Prediction
given event
(MAE)

0.70

0.17



We give the sequence of hospitalization history of a female

patient with a history of diabetes and the model predicts
how the intensities of various diseases will evolve over time
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summary

* We introduce Temporal Event set Modeling by extending TPPs.
 We show a method to model the same using deep learning.

 We empirically demonstrate the necessity of Temporal Event set Modeling by comparing
to strong TPP based baselines.

* We also try to understand the significance for each component in the algorithms through
appropriate ablation experiments.

Code available at: https://github.com/paragduttaiisc/temporal_event_set_modeling SCAN ME
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Encodings
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