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What are TPPs?
• Temporal Point Processes (TPPs) are

probabilistic generative models for
continuous-time event sequences.

• TPPs can be learned from data using
traditional methods [1, 2, 3] and using deep
learning [4, 5, 6].

• Some of the example use cases include
modeling and predicting hospital visits, stock
portfolio selection, and shopping basket
checkouts.

1. M. Winkel – Poisson processes, generalizations and applications (stats.ox.ac.uk/~winkel/bs3a07l1-3.pdf)
2. T. Beckers – An introduction to Gaussian Process models (arxiv.org/pdf/2102.05497.pdf)
3. P. J. Laub and others – Hawkes Processes (arxiv.org/pdf/1507.02822.pdf)
4. Du and others – Recurrent Marked Temporal Point Processes (arxiv.org/pdf/1705.05690.pdf)
5. Mei and Eisner – The Neural Hawkes Process (arxiv.org/pdf/1612.09328.pdf)
6. Zuo and others – Transformer Hawkes Process (arxiv.org/pdf/2002.09291.pdf)

https://www.stats.ox.ac.uk/~winkel/bs3a07l1-3.pdf
https://arxiv.org/pdf/2102.05497.pdf
https://arxiv.org/pdf/1507.02822.pdf
https://arxiv.org/pdf/1705.05690.pdf
https://arxiv.org/pdf/1612.09328.pdf
https://arxiv.org/pdf/2002.09291.pdf


Temporal Event Sets
The notion of sequence of events (in TPPs) is extended to a sequence of sets of events.



Methodology
How to model Temporal Event sets?



Step 1
Learning Contextual Representations for items in event sets



Step 1: Contextual Item Embeddings
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Step 1: Contextual Item Embeddings
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Step 1: Contextual Item Embeddings
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Noise contrastive estimation:

ℒ𝑎𝑢𝑥 = − log 𝜎 𝑣𝑒𝑚𝑏
𝑎 ⋅ 𝑣𝑒𝑚𝑏

𝑝
− log(1 − 𝜎(𝑣𝑒𝑚𝑏

𝑎 ⋅ 𝑣𝑒𝑚𝑏
𝑛 ))



Step 2
Modeling Temporal Event sets using the embeddings learnt in Step 1



Step 2: Temporal Event set Modeling

History
Contains: event sets, corresponding timestamps, and associated domain specific features



Step 2: Temporal Event set Modeling

We need to predict: 𝑒4 and 𝑡4 given ℋ4

𝑒4 is a subset of the event set
𝑡4 is the time at which 𝑒4 occurredℋ4 = { 𝑠1, 𝑡1, 𝑓1 , 𝑠2, 𝑡2, 𝑓2 , 𝑠3, 𝑡3, 𝑓3 }



Step 2: Temporal Event set Modeling

𝑒4

ℋ4 = 𝑠1, 𝑡1, 𝑓1 , 𝑠2, 𝑡2, 𝑓2 , 𝑠3, 𝑡3, 𝑓3 → 𝑒4, 𝑡4



Step 2: Temporal Event set Modeling
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= {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, … , 𝑖10}

𝑠1 𝑠2 𝑠𝑘
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Need to preserve the set relations (permutation invariance and equivariance)
But also differentiate among different different sets with how far they are from each other in the timeline
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Step 2: Temporal Event set Modeling
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Need to preserve the set relations (permutation invariance and equivariance)
But also differentiate among different different sets with how far they are from each other in the timeline

𝑠1 𝑠2 𝑠𝑘

Hence, we introduce SpatioTemporal Encodings:

where t𝑗 is the timestamp corresponding to the 𝑗𝑡ℎ event set s𝑗 for 1 ≤ 𝑗 ≤ 𝑘



Step 2: Temporal Event set Modeling
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Step 2: Temporal Event set Modeling

Each of the heads predicts a gaussian distribution 
corresponding to the intensity
We use a mixture of gaussians to predict arbitrarily 
complex intensities



Step 2: Temporal Event set Modeling
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Similarly, 𝑡𝑘+1 is also obtained



Step 2: Temporal Event set Modeling

Ƹ𝑒𝑘+1
1 , Ƹ𝑡𝑘+1
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Ƹ𝑒𝑘+1, Ƹ𝑡𝑘+1
• 𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 to model and predict event sets

• 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 (to handle class imbalance problem)

• 𝐻𝑢𝑏𝑒𝑟 𝐿𝑜𝑠𝑠 (to learn temporal relations)

where Δ is the absolute value of ( Ƹ𝑡𝑘+1− 𝑡𝑘+1).

We use a linear combination of the the above:

Losses 𝒯 is the target set :



Results



Temporal 
Event set 
Modeling

Training method

Synthea Instacart

Event set 
Predictions 

(DSC)

Time 
Predictions 

(MAE)

Event Set 
Predictions 

(DSC)

Time 
Predictions 

(MAE)

Baselines:

Neural Hawkes Process 0.08 2.50 0.29 0.24

Transformer Hawkes Process 0.18 2.41 0.32 0.24

Hierarchical Model 0.12 2.51 0.30 0.23

Ours:

Temporal Event Set Modeling 0.20 2.29 0.35 0.21

Temporal Event set Modeling + 
Contextual Embeddings

0.30 2.17 0.42 0.18

We gain improvement when compared to baselines 
irrespective of whether we use contextual embeddings



Fine-tuning 
to down-
stream tasks

Training method

Synthea Instacart

Event set 
Prediction given 

time (DSC)

Time Prediction 
given event 

(MAE)

Event Set 
Prediction given 

time (DSC)

Time Prediction 
given event 

(MAE)

Trained from scratch

Neural Hawkes Process 0.21 5.70 0.35 2.19

Transformer Hawkes Process 0.20 4.52 0.34 2.15

Hierarchical Model 0.19 5.29 0.34 2.20

Ours 0.22 4.28 0.38 1.83

Finetuned

Neural Hawkes Process 0.13 6.01 0.30 2.29

Transformer Hawkes Process 0.19 4.60 0.33 2.24

Hierarchical Model 0.18 5.87 0.35 2.31

Ours 0.25 3.91 0.41 1.19

Note than the baselines are not good at being fine-tuned 
since training from scratch often gives better results.



Transfer 
Learning 

(from Synthea 
to MIMIC-III)

Training Method Event Set 
Prediction given 

time (DSC)

Time Prediction 
given event 

(MAE)

Trained from scratch 0.47 0.70

Finetuned (from model 
pretrained on Synthea)

0.52 0.17



Intensity 
Prediction 

Given 
History 

We give the sequence of hospitalization history of a female
patient with a history of diabetes and the model predicts
how the intensities of various diseases will evolve over time
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Summary

• We introduce Temporal Event set Modeling by extending TPPs.

• We show a method to model the same using deep learning.

• We empirically demonstrate the necessity of Temporal Event set Modeling by comparing
to strong TPP based baselines.

• We also try to understand the significance for each component in the algorithms through
appropriate ablation experiments.

Thank You

Code available at: https://github.com/paragduttaiisc/temporal_event_set_modeling



Additional Slides
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Importance 
of Custom 
Encodings

Transformer 
Encodings

Event set 
Prediction 
(DSC)

Time 
Predication 
(MAE)

Positional 
Encodings

0.35 0.22

Ours 0.42 0.18
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Time and 
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