Journals and Refereed Conference Proceedings
- P. Dutta, Kawin M, P. Sinha and A. Dukkipati. Deep Representation Learning for Prediction of Temporal Event Sets in the Continuous Time Domain. ACML: 2023.
- R. S. Ayyagari and A. Dukkipati. Risk-Aware Algorithms for Combinatorial Semi-Bandits. (accepted) In Proceedings of International Symposium on Information Theory (ISIT): 2023.
- A. Adiga, S. Athreya, K. R. Bhimala, A. Dukkipati, T. Gracious, S. Gupta, B. Hurt, G. Kaur, B. Lewis, M. Marathe, V. Mudkavi, G. K. Patra, N. Rathod, R. Sundaresan, S. Venkataramanan and S. Yasodharan.A Multi-Team Multi-Model Collaborative COVID-19 Forecasting Hub for India. . In Proceedings of Winter Simulation Conference (WSC): 2023
- T. Gracious and A. Dukkipati. Dynamic Representation Learning with Temporal Point Processes for Higher-Order Interaction Forecasting. In Proceedings of 37th AAAI Conference on Artificial Intelligence (AAAI): 2023
- S. Gupta and A. Dukkipati. Consistency of Constrained Spectral Clustering under Graph Induced Fair Planted Partitions. Conference on Neural Inforation Processing Systems (NeurIPS): 2022.
- A. Dukkipati, R. Banerjee, R. S. Ayyagari and D. P. Udaybhai. Learning Skills to Navigate without a Master: A Sequential Multi-Policy Reinforcement Learning Algorithm. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): 2022.
[arxiv][video]
- S. Gupta, Gururaj K, A. Dukkipati and R. M. Castro. Equipping SBMs with RBMs: An interpretable approach for analysis of networks with covariates. Journal of Complex Networks. (Accepted): 2022.
[bibtex][arxiv]
- S. Balgi and A. Dukkipati. Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence: 2021.
[bibtex][paper][ code]
- R. Hazra, P. Dutta, S. Gupta, M. A. Qaathir, and A. Dukkipati. Active2 Learning: Actively reducing redundancies in Active Learning methods for Sequence Tagging and Machine Translation. In Proceedings of NAACL: 2021.
[bibtex][paper][code]
- T. Gracious, S. Gupta, A. Kanthali, R. M. Castro and A. Dukkipati. Neural Latent Space Model for Dynamic Networks and Temporal Knowledge Graphs. In Proceedings of 35rd AAAI Conference on Artificial Intelligence (AAAI): 2021.
[bibtex][paper,slides, video][code]
- N. A. Kande, R. Dkshane, A. Dukkipati and P. K. Yalavarthy. SiameseGAN: A Generative model for Denoising of Spectral Domain Optical Coherence Tomography Images. IEEE Transactions on Medical Imaging 40(1):180-192, 2021.
[bibtex][paper][code][github]
- S. Gupta and A. Dukkipati. Winning an Election: On Emergent Strategic Communication in Multi-Agent Networks 19th International Conference on Autonomous Agents and Multi-Agent Systems 2020.
[bibtex][Extended Abstract, video, arXiv][code]
- S. Gupta, R. Hazra and A. Dukkipati. Networked Multi-Agent Reinforcement Learning with Emergent Communication 19th International Conference on Autonomous Agents and Multi-Agent Systems 2020.
[bibtex][Extended Abstract, video, arXiv][code]
- S. Chowdhury, Annervaz K. M and A. Dukkipati. Instance-based Inductive Deep Transfer Learning by Cross-Dataset Querying with Locality Sensitive Hashing. EMNLP Workshop on Deep Learning for Low-resource NLP, 2019.
[code]
- S. Balgi and A. Dukkipati. CUDA : Contradistinguisher for Unsupervised Domain Adaptation. In Proceedings of the IEEE International Conference on Data Mining (ICDM): 2019. (Acceptance Rate: 9.08%)
[bibtex][code][github]
- A. Mehrotra and A. Dukkipati. Skip Residual Pairwise Networks with Learnable Comparative Functions for Few-shot Learning. In IEEE Winter Conference on Applications of Computer Vision (WACV): 2019
- S. Gupta, G. Sharma and A. Dukkipati. A generative model for dynamic networks with applications. In Proceedings of 33rd AAAI Conference on Artificial Intelligence (AAAI), 2019. (Acceptance Rate: 16.2%)
[bibtex][code]
- G. Pandey and A. Dukkipati. Learning to segment with image-level supervision using CRF-CNN. In IEEE Winter Conference on Applications of Computer Vision (WACV): 2019.
[code]
- M.S. Pydi and A. Dukkipati. On Consistency of Compressive Spectral Clustering. In Proceedings of IEEE International Symposium on Information Theory (ISIT), 2018.
- Annervaz K. M, S. Chowdhury and A. Dukkipati. Learning beyond datasets: Knowledge Graph Augmented Neural Networks for Natural language Processing. In Proceedings of NAACL HLT, 2018. (oral)
[arXiv] [code] [blog]
- G. Pandey and A. Dukkipati. Unsupervised Feature Learning with Discriminative Encoder. In Proceedings of the IEEE International Conference on Data Mining (ICDM): 2017. (Acceptance Rate (Regular): 9.25%).
[arxiv] [code]
- D. Ghoshdastidar and A. Dukkipati. Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques. In The Journal of Machine Learning Research, 18(50):1-41, 2017.
[arxiv]
- P. Shyam, S. Gupta and A. Dukkipati. Attentive Recurrent Comparators. In Proceedings of the International Conference on Machine Learning (ICML), 2017.
[bibtex][arxiv] [code] [blog]
- D. Ghoshdastidar and A. Dukkipati. Consistency of Spectral Hypergraph Partitioning under Planted Partition Model . The Annals of Statistics, 45(1): 289-315, 2017.
[bibtex][arxiv]
- G. Pandey and A. Dukkipati. Variational methods for conditional multimodal deep learning. In Proceedings of the International Joint Conference on Neural Networks (IJCNN): 2017.
[arxiv] [ DEEPImagine ]
- G. Pandey and A. Dukkipati. On Collapsed representations of hierarchical Completely Random Measures. In Proceedings of the 33rd International Conference on Machine Learning (ICML): 1605-1613, 2016.
- A. Dukkipati, D. Ghoshdastidar, and J. Krishnan. Mixture Modelling with Compact Support Distributions for Unsupervised Learning. In Proceedings of the International Joint Conference on Neural Networks (IJCNN): 2706-2713, 2016.
- D. Ghoshdastidar, A. Adsul and A. Dukkipati. Learning with Jensen-Tsallis kernels. IEEE Transactions on Neural Networks and Learning Systems 27(10): 2108-2119, 2016.
- D. Ghoshdastidar and A. Dukkipati. A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning.In
Proceedings of the 32nd International Conference on Machine Learning (ICML): 400-409, 2015. (Acceptance Rate: 26%)
- D. Ghoshdastidar and A. Dukkipati. Spectral Clustering using Multilinear SVD: Analysis, Approximations and Applications. In Proceedings of 29th AAAI Conference on Artificial Intelligence: 2610-2616, 2015.
(Acceptance Rate (Oral): 11.95%)
- D. Ghoshdastidar and A. Dukkipati. Consistency of Spectral Partitioning of Uniform Hypergraphs under Planted Partition Model. In Advances in Neural Information Processing Systems (NIPS), pp.397-405, 2014.
[code] (Acceptance Rate: 24.67%)
- D. Ghoshdastidar, A. Dukkipati, and S. Bhatnagar. Newton based stochastic optimization using q-Gaussian smoothed functional algorithms. Automatica, 50(10):2606–2614, 2014.
[arxiv] [code]
- D. Ghoshdastidar, A. Dukkipati, and S. Bhatnagar. Smoothed functional algorithms for stochastic optimization using q-Gaussian distributions. ACM Transactions on Modeling and Computer Simulation, 24 (3), Article 17, 2014.
[arxiv] [code]
- G. Pandey and A. Dukkipati. Learning by Stretching Deep Networks. In Proceedings of the 31st International Conference on Machine Learning (ICML), JMLR Workshops and Conference Proceedings: Pages II-1719-II-1727, 2014.
(Acceptance Rate: 25%) [code]
- D. Ghoshdastidar, A. Dukkipati, A. P. Adsul and A. S. Vijayan. Spectral Clustering with Jensen-type kernels and their multi-point extensions. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1472-1477, IEEE Press, 2014.
(Acceptance Rate: 29.88%) [arxiv]
- G. Pandey and A. Dukkipati. To go deep or wide in learning? In Proceedings of Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS'2014): 724-732, 2014.
(Acceptance Rate: 36.12%)
- A. Dukkipati, G. Pandey, D. Ghoshdastidar, P. Koley, and D. M. V. Satya Sriram. Generative maximum entropy learning for multiclass classification. In Proceedings of IEEE International Conference on Data Mining (ICDM'13), pp. 141-150, IEEE press, 2013.
(Acceptance Rate (Regular): 11.62%) [arxiv]
- G. Pandey and A. Dukkipati. Minimum description length Principle for maximum entropy model selection. In Proceedings of IEEE International Symposium on Information Theory (ISIT'13), pp. 1521-1525, IEEE press, 2013.
[arxiv]
- D. Ghoshdastidar and A. Dukkipati. On power law kernels, corresponding reproducing kernel Hilbert space and applications. In Proceedings of 27th AAAI Conference on Artificial Intelligence (AAAI'13): 365-371, 2013.
(Acceptance Rate: 29%) [arxiv]
- D. Ghoshdastidar, A. Dukkipati and S. Bhatnagar. q-Gaussian based smoothed functional algorithm for stochastic optimization. In Proceedings of IEEE International Symposium on Information Theory (ISIT'12), pp. 1059-1063, IEEE press, 2012.
[arxiv]
- A. D. Kumar and A. Dukkipati. A two stage selective averaging LDPC decoding. In Proceedings of IEEE International Symposium on Information Theory (ISIT'12), pp. 2866-2870, IEEE press, 2012.
[arxiv]
- A. Dukkipati. On Kolmogorov-Nagumo averages and nonextensive entropy. In Proceedings of International Symposium on Information
Theory and its Applications (ISITA'10), pp. 446-451, IEEE press, 2010.
- A. Dukkipati, A. K. Yadav and M. N. Murty. Maximum entropy model based classification with feature selection. In Proceedings of IEEE International Conference on Pattern Recognition (ICPR'10), pp. 565-568, IEEE press, 2010.
Preprints
Presentations